zoukankan      html  css  js  c++  java
  • Python 递归函数

    在函数内部,可以调用其他函数。如果一个函数在内部调用自身本身,这个函数就是递归函数。

    举个例子,我们来计算阶乘n! = 1 x 2 x 3 x ... x n,用函数fact(n)表示,可以看出:

    fact(n) = n! = 1 x 2 x 3 x ... x (n-1) x n = (n-1)! x n = fact(n-1) x n

    所以,fact(n)可以表示为n x fact(n-1),只有n=1时需要特殊处理。

    于是,fact(n)用递归的方式写出来就是:

    def fact(n):
        if n==1:
            return 1
        return n * fact(n - 1)
    上面就是一个递归函数。可以试试:
    
    >>> fact(1)
    1
    >>> fact(5)
    120
    >>> fact(100)
    93326215443944152681699238856266700490715968264381621468592963895217599993229915608941463976156518286253697920827223758251185210916864000000000000000000000000L
    
    如果我们计算fact(5),可以根据函数定义看到计算过程如下:
    
    ===> fact(5)
    ===> 5 * fact(4)
    ===> 5 * (4 * fact(3))
    ===> 5 * (4 * (3 * fact(2)))
    ===> 5 * (4 * (3 * (2 * fact(1))))
    ===> 5 * (4 * (3 * (2 * 1)))
    ===> 5 * (4 * (3 * 2))
    ===> 5 * (4 * 6)
    ===> 5 * 24
    ===> 120
    递归函数的优点是定义简单,逻辑清晰。理论上,所有的递归函数都可以写成循环的方式,但循环的逻辑不如递归清晰。
    
    使用递归函数需要注意防止栈溢出。
    

    解决递归调用栈溢出的方法是通过尾递归优化,事实上尾递归和循环的效果是一样的,所以,把循环看成是一种特殊的尾递归函数也是可以的。

    尾递归是指,在函数返回的时候,调用自身本身,并且,return语句不能包含表达式。这样,编译器或者解释器就可以把尾递归做优化,使递归本身无论调用多少次,都只占用一个栈帧,不会出现栈溢出的情况。

    def fact(n):
        return fact_iter(n, 1)
    
    def fact_iter(num, product):
        if num == 1:
            return product
        return fact_iter(num - 1, num * product)
    可以看到,return fact_iter(num - 1, num * product)仅返回递归函数本身,num - 1和num * product在函数调用前就会被计算,不影响函数调用。
    
    fact(5)对应的fact_iter(5, 1)的调用如下:
    
    ===> fact_iter(5, 1)
    ===> fact_iter(4, 5)
    ===> fact_iter(3, 20)
    ===> fact_iter(2, 60)
    ===> fact_iter(1, 120)
    ===> 120
    尾递归调用时,如果做了优化,栈不会增长,因此,无论多少次调用也不会导致栈溢出。
    

      

      

  • 相关阅读:
    [推荐]大量 Blazor 学习资源(二)
    [翻译]欢迎使用C#9.0
    重磅消息:微软发布多平台应用UI框架 MAUI,网友直呼:牛x
    如何对Git的分支进行管理
    如何使用JPA的@Formula注解
    伤其十指,不如断其一指,谈谈我的学习计划
    如何使用Swagger-UI在线生成漂亮的接口文档
    如何在Linux服务器上部署jar包
    使用PageHelper插件分页时,如何对对象进行转换以及添加属性
    在Java中使用Collections.sort 依据多个字段排序
  • 原文地址:https://www.cnblogs.com/likeyou1/p/8427284.html
Copyright © 2011-2022 走看看