§1 Skip List 介绍
§2 Skip List 定义以及构造步骤
§3 Skip List 完整实现
§4 Skip List 时间复杂度分析
§1 Skip List 介绍
Skip List是一种随机化的数据结构,基于并联的链表,其效率可比拟于二叉查找树(对于大多数操作需要O(log n)平均时间)。基本上,跳跃列表是对有序的链表增加上附加的前进链接,增加是以随机化的方式进行的,所以在列表中的查找可以快速的跳过部分列表(因此得名)。所有操作都以对数随机化的时间进行。Skip List可以很好解决有序链表查找特定值的困难。
§2 Skip List 定义以及构造步骤
Skip List定义
像下面这样(初中物理经常这样用,这里我也盗用下):
一个跳表,应该具有以下特征:
- 一个跳表应该有几个层(level)组成;
- 跳表的第一层包含所有的元素;
- 每一层都是一个有序的链表;
- 如果元素x出现在第i层,则所有比i小的层都包含x;
- 第i层的元素通过一个down指针指向下一层拥有相同值的元素;
- 在每一层中,-1和1两个元素都出现(分别表示INT_MIN和INT_MAX);
- Top指针指向最高层的第一个元素。
构建有序链表
的一个跳跃表如下:
Skip List构造步骤:
1、给定一个有序的链表。
2、选择连表中最大和最小的元素,然后从其他元素中按照一定算法(随机)随即选出一些元素,将这些元素组成有序链表。这个新的链表称为一层,原链表称为其下一层。
3、为刚选出的每个元素添加一个指针域,这个指针指向下一层中值同自己相等的元素。Top指针指向该层首元素
4、重复2、3步,直到不再能选择出除最大最小元素以外的元素。
一、查找
目的:在跳跃表中查找一个元素x
在跳跃表中查找一个元素x,按照如下几个步骤进行:
1. 从最上层的链(Sh)的开头开始
2. 假设当前位置为p,它向右指向的节点为q(p与q不一定相邻),且q的值为y。将y与x作比较
(1) x=y 输出查询成功及相关信息
(2) x>y 从p向右移动到q的位置
(3) x<y 从p向下移动一格
3. 如果当前位置在最底层的链中(S0),且还要往下移动的话,则输出查询失败
二、插入
目的:向跳跃表中插入一个元素x
首先明确,向跳跃表中插入一个元素,相当于在表中插入一列从S0中某一位置出发向上的连续一段元素。有两个参数需要确定,即插入列的位置以及它的“高度”。
关于插入的位置,我们先利用跳跃表的查找功能,找到比x小的最大的数y。根据跳跃表中所有链均是递增序列的原则,x必然就插在y的后面。
而插入列的“高度”较前者来说显得更加重要,也更加难以确定。由于它的不确定性,使得不同的决策可能会导致截然不同的算法效率。为了使插入数据之后,保持该数据结构进行各种操作均为O(logn)复杂度的性质,我们引入随机化算法(Randomized Algorithms)。
我们定义一个随机决策模块,它的大致内容如下:
产生一个0到1的随机数r r ← random()
如果r小于一个常数p,则执行方案A, if r<p then do A
否则,执行方案B else do B
初始时列高为1。插入元素时,不停地执行随机决策模块。如果要求执行的是A操作,则将列的高度加1,并且继续反复执行随机决策模块。直到第i次,模块要求执行的是B操作,我们结束决策,并向跳跃表中插入一个高度为i的列。
我们来看一个例子:
假设当前我们要插入元素“40”,且在执行了随机决策模块后得到高度为4
步骤一:找到表中比40小的最大的数,确定插入位置
步骤二:插入高度为4的列,并维护跳跃表的结构
三、删除
目的:从跳跃表中删除一个元素x
删除操作分为以下三个步骤:
在跳跃表中查找到这个元素的位置,如果未找到,则退出
将该元素所在整列从表中删除
将多余的“空链”删除
§3 Skip List 完整实现
§4 Skip List 时间复杂度分析
这里计算时间复杂度的时候以Redis的源码为准,生成随机层数的源码是:
int zslRandomLevel(void) { int level = 1; while ((random()&0xFFFF) < (ZSKIPLIST_P * 0xFFFF)) level += 1; return (level<ZSKIPLIST_MAXLEVEL) ? level : ZSKIPLIST_MAXLEVEL; }
这里假设 ZSKIPLIST_P 为2 (实际为4,便于理解设置为2),这段代码我们可以理解为,落到层数为i + 1的概率为0.5^i
而反过来理解,每两个节点出现层数为2的期望就是1,每4个节点出现第三层的期望也为1,每8个节点出现第四层(0.5^3)的期望为1 (期望值 = 单个概率 * 数量)
正是基于此,如果我们的数据量越大,越是可以接近期望的值,所以,我们可以认为,我们实现了 "如果每2^i个节点都指向前面2^i个节点"的效果,也就是说,查找的平均复杂度为O(logN)