MapReduce
MapReduce是一种编程模型,用于大规模数据集(大于1TB)的并行运算。
Tez
Tez是Apache开源的支持DAG作业的计算框架,它直接源于MapReduce框架,核心思想是将Map和Reduce两个操作进一步拆分,即Map被拆分成Input、Processor、Sort、Merge和Output, Reduce被拆分成Input、Shuffle、Sort、Merge、Processor和Output等,这样,这些分解后的元操作可以任意灵活组合,产生新的操作,这些操作经过一些控制程序组装后,可形成一个大的DAG作业。
Spark
Spark是UC Berkeley AMP lab所开源的类Hadoop MapReduce的通用的并行计算框架,Spark基于map reduce算法实现的分布式计算,拥有Hadoop MapReduce所具有的优点;但不同于MapReduce的是Job中间输出和结果可以保存在内存中,从而不再需要读写HDFS,因此Spark能更好地适用于数据挖掘与机器学习等需要迭代的map reduce的算法。
Tez和Mapreduce
核心思想:MapReduce将一个算法抽象成Map和Reduce两个阶段进行处理;Tez将Map和Reduce两个操作进一步拆分,即Map被拆分成Input、Processor、Sort、Merge和Output, Reduce被拆分成Input、Shuffle、Sort、Merge、Processor和Output等
依赖DAG:Mapreduce没有DAG一说,Tez将map和reduce阶段拆分成多个阶段,分解后的元操作可以任意灵活组合,产生新的操作,这些操作经过一些控制程序组装后,可形成一个大的DAG作业
落地磁盘:MapReduce会有多次落地磁盘;Tez可以将多个有依赖的作业转换为一个作业,这样只需写一次HDFS,且中间节点较少
Tez和Spark区别
使用场景:spark更像是一个通用的计算引擎,提供内存计算,实时流处理,机器学习等多种计算方式,适合迭代计算;tez作为一个框架工具,特定为hive和pig提供批量计算
运行模式:spark属于内存计算,支持多种运行模式,可以跑在standalone,yarn上;而tez只能跑在yarn上;虽然spark与yarn兼容,但是spark不适合和其他yarn应用跑在一起
资源利用:tez能够及时的释放资源,重用container,节省调度时间,对内存的资源要求率不高; 而spark如果存在迭代计算时,container一直占用资源;
————————————————
版权声明:本文为CSDN博主「L13763338360」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/L13763338360/article/details/106912743/