zoukankan      html  css  js  c++  java
  • 21航电5E

    题目链接

    Problem - 7016

    题解

    设矩阵(F)为从(i)出发到(j)停止的概率(对应(f_{i,j})),矩阵(G)为从(i)出发到(j)无数次的概率之和(对应(g_{i,j})),概率矩阵为P(对应(p_{i,j}))。

    对于矩阵(F)容易得到:

    [f_{i,j}=g_{i,j} imes p_{j,j} ]

    对于矩阵(G)可得:

    [g_{i,j}=sumlimits_{k eq j}{g_{i,k} imes p_{k,j}}+[i=j] ]

    ([i=j])意思是从(i)出发有个第0次到达(i)的概率为1,所以要额外加1。

    观察式子,可以发现和矩阵乘法非常像,只是多了一个(k eq j)的条件。只需在原本矩阵乘积的基础上减去(k=j)的情况即可。

    [g_{i,j}=sumlimits_{k=1}^n{g_{i,k} imes p_{k,j}}+[i=j]-g_{i,j} imes p_{j,j} \ g_{i,j}+g_{i,j} imes p_{j,j}-[i=j]=sumlimits_{k=1}^n{g_{i,k} imes p_{k,j}} ]

    令矩阵(D)

    [d_{i,j}=left{ egin{aligned} p_{i,j} & & i=j \ 0 & & i eq j \ end{aligned} ight. ]

    可得((E)为单位矩阵)

    [F=G imes D \ G+G imes D-E = G imes P ]

    化简得

    [G=(E+D-P)^{-1} \ F=G imes D ]

    直接套矩阵求逆的板子即可

    #include <bits/stdc++.h>
    
    #define endl '
    '
    #define IOS std::ios::sync_with_stdio(0); cin.tie(0); cout.tie(0)
    #define mp make_pair
    #define seteps(N) fixed << setprecision(N) 
    typedef long long ll;
    
    using namespace std;
    /*-----------------------------------------------------------------*/
    
    ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
    #define INF 0x3f3f3f3f
    
    const int N = 3e3 + 10;
    const int M = 998244353;
    const double eps = 1e-5;
    
    inline ll qpow(ll a, ll b, ll m) {
        ll res = 1;
        while(b) {
            if(b & 1) res = (res * a) % m;
            a = (a * a) % m;
            b = b >> 1;
        }
        return res;
    }
    
    ll p[N][N << 1];
    ll d[N][N];
    
    bool Gauss(ll a[][N << 1], int n) { //高斯消元求矩阵的逆
        for(int i = 1; i <= n; i++) {
            for(int j = 1; j <= n; j++) {
                a[i][j + n] = 0;
            }
            a[i][i + n] = 1;
        }
        for(int i = 1; i <= n; i++) {
            int r = i;
            for(int j = i + 1; j <= n; j++) {
                if(a[j][i] > a[r][i]) r = j;
            }
            if(r != i) swap(a[i], a[r]);
            if(!a[i][i]) return false;
            ll inv = qpow(a[i][i], M - 2, M);
            for(int j = 1; j <= n; j++) {
                if(j == i) continue;
                ll da = a[j][i] * inv % M; //a[j][i]可能会被更新,所以要先保存
                for(int k = i; k <= (n << 1); k++) {
                    ll t = a[i][k] * da % M;
                    a[j][k] = ((a[j][k] - t) % M + M) % M;
                }
            }
            for(int j = i; j <= (n << 1); j++) a[i][j] = a[i][j] * inv % M;
        }
        return true;
    }
    
    
    int main() {
        IOS;
        int t;
        cin >> t;
        while(t--) {
            int n;
            cin >> n;
            for(int i = 1; i <= n; i++) {
                ll sum = 0;
                for(int j = 1; j <= n; j++) {
                    d[i][j] = 0;
                    cin >> p[i][j];
                    sum += p[i][j];
                }
                sum = qpow(sum, M - 2, M);
                for(int j = 1; j <= n; j++) {
                    p[i][j] = p[i][j] * sum % M;
                }
            }
            for(int i = 1; i <= n; i++) {
                for(int j = 1; j<= n; j++) {
                    if(i == j) {
                        d[i][j] = p[i][j];
                        p[i][j] = 1;
                    } else {
                        p[i][j] = -p[i][j];
                    }
                }
            }
            Gauss(p, n);
            for(int i = 1; i <= n; i++) {
                for(int j = 1; j <= n; j++) {
                    ll res = 0;
                    res = p[i][j + n] * d[j][j] % M;
                    res %= M;
                    cout << res << " 
    "[j == n];
                }
                
            }
        }
    }
    
  • 相关阅读:
    LOJ6284. 数列分块入门 8 题解
    LOJ6283. 数列分块入门 7 题解
    LOJ6281. 数列分块入门 5 题解
    LOJ6280. 数列分块入门 4 题解
    LOJ6279. 数列分块入门 3 题解
    LOJ6278. 数列分块入门 2 题解
    LOJ6277. 数列分块入门 1 题解
    洛谷P3402 可持久化并查集 题解
    P3919 【模板】可持久化线段树 1(可持久化数组)题解 主席树模板题
    计算机图形学:凹凸贴图、法线贴图、切线空间、TBN矩阵
  • 原文地址:https://www.cnblogs.com/limil/p/15116927.html
Copyright © 2011-2022 走看看