zoukankan      html  css  js  c++  java
  • l1 和l2范数的真实意义

    很长时间一直没有明白真实的含义,十一期间补充一下这方面的知识。

    l0 范数是 ||x||0 = xi (xi不等于0)代表非0数字的个数,[1,2,3,4,5]  非0个数为5,[0,1,2,0,3]非0 个数为3

    l1范数是||x||1=Σ|xi|  x与0之间的曼哈顿距离,[1,2,3,-2,-1] =1+2+3+2+1 =9,为个数字的绝对值的和。

    l2范数是||x||2=Σ|xi|^2为x与0之间的欧式距离,[1,2,-3]=1^2+2^2+(-3)^2=1+4+9=14,为各个数字的平方和在开方。

    lp范数是||x||p=√∑(xi)^p。控制模型复杂度减少过拟合。一般在损失函数中加入惩罚项。

    l1和l2为什么可以减少过拟合。模型复杂就是因为w参数较多,所以模型比较复杂。w=[w1,w2,w3,w4,w5,....,wn]让其中某些为0,某些不为0,那就是l0范数

    目标函数为: min  J(wxi,y)    s.t   |w|0<=C        最优问题无法解决。|w|1和|w|2可以限制小于常数C

    构造拉格朗日函数  L(w,α) = J(wxi,y)+α(|w|1-C)                  L(w,α) = J(wxi,y)+α(|w|2-C)=J(wxi;y)+α|w|2-αC=minJ(wxi,y)+α|w|2   

    如果是二维的话既要最小化损失函数,又要简化后面的惩罚项,当时1范数的时候,当w1,w2是两个坐标所以就是一个斜倒正的正方形可以清晰的看出w1或者w2为0.

    当二范数的时候,就是圆和等高线的交集。

  • 相关阅读:
    mysql修改数据库的存储引擎(InnoDB)
    如何查看进程/服务是否启动
    Spark Streaming 入门
    Graphlab create的基本使用
    构建房屋预测回归模型
    构建应用深层特征的图像检索系统
    构建商品评价的分类器
    Elastic Static初识(01)
    《Linux就该这么学》笔记(二)
    《Linux就该这么学》笔记(一)
  • 原文地址:https://www.cnblogs.com/limingqi/p/11621879.html
Copyright © 2011-2022 走看看