zoukankan      html  css  js  c++  java
  • Hadoop搭建之全分布式搭建

    参考网址:

    https://www.cnblogs.com/jhxxb/p/10562460.html

    https://www.cnblogs.com/qingyunzong/p/8496127.html

    一、搭建规划

    使用4台CentOS-7进行集群搭建

    主机名

    IP地址

    角色

    master

    192.168.56.100

    NameNode,ResourceManager

    slave1

    192.168.56.101

    DataNode,NodeManager,SecondaryNameNode

    slave2

    192.168.56.102

    DataNode,NodeManager

    slave3

    192.168.56.103

    DataNode,NodeManager,JobHistoryServer

    规划用户:root

    规划安装目录:/opt/hadoop/apps

    规划数据目录:/opt/hadoop/data

    二.准备工作

    1.设置hostname和hosts

    1.1设置hostname

    #在master,slave1,slave2,slave3上分别执行
    #master
    hostnamectl set-hostname master
    #slave1
    hostnamectl set-hostname slave1

    #slave2
    hostnamectl set-hostname slave2

    #slave3
    hostnamectl set-hostname slave3

    1.2设置hosts

    vim /etc/hosts
    192.168.56.100 master

    192.168.56.101 slave1

    192.168.56.102 slave2
    192.168.56.103 slave3

    2.免密登录

    2.1设置登录自己免秘钥

    ssh localhost
    cd ~/.ssh
    ssh-keygen -t dsa -P '' -f ~/.ssh/id_dsa
    cat ~/.ssh/id_dsa.pub >> ~/.ssh/authorized_keys

    2.2设置master等slave1,slave2,slave3免秘钥

    #在master上,将id_dsa_pub分别分发给slave1,slave2,slave3
    cp id_dsa.pub master.pub
    scp -r ~/.ssh/master.pub  slave1:~/.ssh/
    scp -r ~/.ssh/master.pub  slave2:~/.ssh/
    scp -r ~/.ssh/master.pub  slave3:~/.ssh/
    #在slave1,slave2,slave3上分别将id_dsa_pub追加到authorized_keys上
    cat ~/.ssh/master.pub >> ~/.ssh/authorized_keys

    3.JDK

    3.1下载,上传并解压包

    #1.在master上,上传并解压包
    tar -zxvf  jdk-8u161-linux-x64.tar.gz -C /opt/hadoop/apps
    #2.在master上,将包分发给slave1,slave2,slave3
    scp -r /opt/hadoop/apps/jdk1.8.0_161 slave1:/opt/hadoop/apps
    scp -r /opt/hadoop/apps/jdk1.8.0_161 slave2:/opt/hadoop/apps
    scp -r /opt/hadoop/apps/jdk1.8.0_161 slave3:/opt/hadoop/apps

    3.2配置环境变量

    #1.解压包
    tar -zxvf  jdk-8u161-linux-x64.tar.gz -C /opt/hadoop/apps
    
    #2.配置环境变量
    vim ~/.bashrc
    export JAVA_HOME=/opt/hadoop/apps/jdk1.8.0_161
    export PATH=$PATH:$JAVA_HOME/bin
    
    #3.使得环境变量生效
    source ~/.bashrc
    
    #4.验证
    java -version #如果显示为Linux自带OpenJdk(如下),需要先卸载
    
    #[root@localhost apps]# java -version
    #openjdk version "1.8.0_242"
    #OpenJDK Runtime Environment (build 1.8.0_242-b08)
    #OpenJDK 64-Bit Server VM (build 25.242-b08, mixed mode)
    
    #参考网址:https://blog.csdn.net/qq_35535690/article/details/81976210
    
    rpm -qa|grep java
    
    rpm -e --nodeps java-1.7.0-openjdk-1.7.0.251-2.6.21.1.el7.x86_64
    rpm -e --nodeps java-1.7.0-openjdk-headless-1.7.0.251-2.6.21.1.el7.x86_64
    rpm -e --nodeps java-1.8.0-openjdk-1.8.0.242.b08-1.el7.x86_64
    rpm -e --nodeps java-1.8.0-openjdk-headless-1.8.0.242.b08-1.el7.x86_64

    4.关闭防火墙

    #永久关闭防火墙
    systemctl disable firewalld
    #临时关闭防火墙
    systemctl stop firewalld
    #注意:如果系统报错java.io.IOException: Got error, status message , ack with firstBadLink as 192.168.56.102:50010
    #可能是由于没有关闭防火墙导致的,第一条命令不会及时生效,所以还需要第二条命令

    5.关闭安全机制

    vim /etc/sysconfig/selinux
    
    SELINUX=disable

    6.同步时间

    date -s 'yyyy-MM-dd hh:mm:ss'
    date -s '2021-02-02 12:17:50'

    三、搭建工作

    0.解压及环境变量配置

    #1.解压包
    unzip hadoop-2.7.1.zip -d /opt/hadoop/apps
    #2.配置环境变量
    vim ~/.bashrc
    export HADOOP_HOME=/opt/hadoop/apps/hadoop-2.7.1
    export PATH=$PATH:$HADOOP_HOME/bin:$HADOOP_HOME/sbin
    
    #3.使得环境变量生效
    source ~/.bashrc

    1.配置hdfs

    #1.配置hdfs-env.sh
    export JAVA_HOME=/opt/hadoop/apps/jdk1.8.0_161
    #2.配置core-site.xml
    <configuration>
            <property>
                    <name>dfs.defaultDF</name>
                    <value>hdfs://master:9000</value>
                    <description>指定master</description>
            </property>
    
            <property>
                    <name>dfs.tmp.data.dir</name>
                    <value>/opt/hadoop/data/hadoopdata/tmp</value>
                    <description>hadoop产生的数据</description>
            </property>
    </configuration>
    #3.配置hdfs-site.xml
    <configuration>
            <property>
                    <name>dfs.namenode.name.dir</name>
                    <value>/opt/hadoop/data/namenode</value>
                    <description>为了保证元数据的安全一般配置多个不同目录</description>
            </property>
    
            <property>
                    <name>dfs.datanode.data.dir</name>
                    <value>/opt/hadoop/data/datanode</value>
                    <description>datanode 的数据存储目录</description>
            </property>
    
            <property>
                    <name>dfs.replication</name>
                    <value>3</value>
                    <description>HDFS 的数据块的副本存储个数, 默认是3</description>
            </property>
    
            <property>
                    <name>dfs.secondary.http.address</name>
                    <value>slave1:50090</value>
                    <description>secondarynamenode 运行节点的信息,和 namenode 不同节点</description>
            </property>
    </configuration>
    #4.配置slaves
    vim slaves
    
    slave1
    slave2
    slave3

    2.配置yarn

    #1.配置yarn-env.sh
    export JAVA_HOME=/opt/hadoop/apps/jdk1.8.0_161
    #2.配置yarn-site.xml
    <configuration>
    <!-- Site specific YARN configuration properties -->
        <!-- Reducer获取数据的方式 -->
        <property>
            <name>yarn.nodemanager.aux-services</name>
            <value>mapreduce_shuffle</value>
        </property>
        <!-- 指定YARN的ResourceManager的地址 -->
        <property>
            <name>yarn.resourcemanager.hostname</name>
            <value>master</value>
        </property>
    </configuration>

    3.配置mapreduce

    #1.配置mapred-env.sh
    export JAVA_HOME=/opt/hadoop/apps/jdk1.8.0_161
    #2.配置mapred-site.xml
    <configuration>
        <property>
            <name>mapreduce.framework.name</name>
            <value>yarn</value>
        </property>
    </configuration>

    4.配置jobhistory,打开日志历史服务器

    #mapred-site.xml
    #jobhistory用于查询每个job运行完以后的历史日志信息,是作为一台单独的服务器运行的。
    #可以在namenode或者datanode上的任意一台启动即可。
    <configuration>
    <!-- 历史服务器端地址 -->
    <property>
    <name>mapreduce.jobhistory.address</name>
    <value>slave3:10020</value>
    </property>
    <!-- 历史服务器web端地址 -->
    <property>
    <name>mapreduce.jobhistory.webapp.address</name>
    <value>slave3:19888</value>
    </property>
    <property>
    <name>yarn.log.server.url</name>
    <value>http://slave3:19888/jobhistory/logs</value>
    </property>
    </configuration>

    5.配置log-aggregation,打开日志聚集

    #yarn-site.xml
    <configuration>
        <!-- 开启日志聚集功能 -->
        <property>
            <name>yarn.log-aggregation-enable</name>
            <value>true</value>
        </property>
        <!-- 设置日志保留时间(7天) -->
        <property>
            <name>yarn.log-aggregation.retain-seconds</name>
            <value>604800</value>
        </property>
    </configuration>

    6.分发文件给slave1,slave2,slave3

    #1.将配置好的hadoop包分发给slave1,slave2,slave3
    scp -r /opt/hadoop/apps/hadoop-2.7.1 slave1:/opt/hadoop/apps/
    scp -r /opt/hadoop/apps/hadoop-2.7.1 slave2:/opt/hadoop/apps/
    scp -r /opt/hadoop/apps/hadoop-2.7.1 slave3:/opt/hadoop/apps/
    
    #2.在slave1,slave2,slave3配置hadoop的环境变量
    vim ~/.bashrc
    export HADOOP_HOME=/opt/hadoop/apps/hadoop-2.7.1
    export PATH=$PATH:$HADOOP_HOME/bin:$HADOOP_HOME/sbin
    source ~/.bashrc

    7.初始化,启动,验证

    #如果命令没有执行权限,需要赋予执行的权限

    chmod +x /opt/hadoop/apps/hadoop-2.7.1/bin/*

      chmod +x /opt/hadoop/apps/hadoop-2.7.1/sbin/*

    #1.在master上格式化namenode,只需要格式化一次,如果已经格式化,则再不需要
    hdfs namenode -format
    #2.在namenode节点启动服务;如果想在其他节点启动,可以配置免密登录,或者启动后输入密码
    start-all.sh
    #3.在slave3上启动日志服务器
    mr-jobhistory-daemon.sh start historyserver

    #master的进程
    22820 Jps
    20215 DataNode
    20409 NodeManager
    20154 NameNode
    20349 ResourceManager
    
    #slave1的进程
    4242 Jps
    4108 DataNode
    4175 SecondaryNameNode
    
    #slave2的进程
    4026 Jps
    3947 DataNode
    
    #slave3的进程
    4097 Jps
    3947 DataNode
    4063 JobHistoryServer

    hdfs dfsadmin -report
    Configured Capacity: 26566721536 (24.74 GB)
    Present Capacity: 7530344448 (7.01 GB)
    DFS Remaining: 7527845888 (7.01 GB)
    DFS Used: 2498560 (2.38 MB)
    DFS Used%: 0.03%
    Under replicated blocks: 0
    Blocks with corrupt replicas: 0
    Missing blocks: 0
    Missing blocks (with replication factor 1): 0
    
    -------------------------------------------------
    Live datanodes (4):
    
    Name: 192.168.56.100:50010 (master)
    Hostname: master
    Decommission Status : Normal
    Configured Capacity: 6641680384 (6.19 GB)
    DFS Used: 2486272 (2.37 MB)
    Non DFS Used: 5082165248 (4.73 GB)
    DFS Remaining: 1557028864 (1.45 GB)
    DFS Used%: 0.04%
    DFS Remaining%: 23.44%
    Configured Cache Capacity: 0 (0 B)
    Cache Used: 0 (0 B)
    Cache Remaining: 0 (0 B)
    Cache Used%: 100.00%
    Cache Remaining%: 0.00%
    Xceivers: 1
    Last contact: Tue Feb 02 12:54:34 CST 2021
    
    
    Name: 192.168.56.102:50010 (slave2)
    Hostname: slave2
    Decommission Status : Normal
    Configured Capacity: 6641680384 (6.19 GB)
    DFS Used: 4096 (4 KB)
    Non DFS Used: 4651347968 (4.33 GB)
    DFS Remaining: 1990328320 (1.85 GB)
    DFS Used%: 0.00%
    DFS Remaining%: 29.97%
    Configured Cache Capacity: 0 (0 B)
    Cache Used: 0 (0 B)
    Cache Remaining: 0 (0 B)
    Cache Used%: 100.00%
    Cache Remaining%: 0.00%
    Xceivers: 1
    Last contact: Tue Feb 02 12:54:32 CST 2021
    
    
    Name: 192.168.56.103:50010 (slave3)
    Hostname: slave3
    Decommission Status : Normal
    Configured Capacity: 6641680384 (6.19 GB)
    DFS Used: 4096 (4 KB)
    Non DFS Used: 4651360256 (4.33 GB)
    DFS Remaining: 1990316032 (1.85 GB)
    DFS Used%: 0.00%
    DFS Remaining%: 29.97%
    Configured Cache Capacity: 0 (0 B)
    Cache Used: 0 (0 B)
    Cache Remaining: 0 (0 B)
    Cache Used%: 100.00%
    Cache Remaining%: 0.00%
    Xceivers: 1
    Last contact: Tue Feb 02 12:54:31 CST 2021
    
    
    Name: 192.168.56.101:50010 (slave1)
    Hostname: slave1
    Decommission Status : Normal
    Configured Capacity: 6641680384 (6.19 GB)
    DFS Used: 4096 (4 KB)
    Non DFS Used: 4651503616 (4.33 GB)
    DFS Remaining: 1990172672 (1.85 GB)
    DFS Used%: 0.00%
    DFS Remaining%: 29.96%
    Configured Cache Capacity: 0 (0 B)
    Cache Used: 0 (0 B)
    Cache Remaining: 0 (0 B)
    Cache Used%: 100.00%
    Cache Remaining%: 0.00%
    Xceivers: 1
    Last contact: Tue Feb 02 12:54:31 CST 2021
    hadoop jar /opt/hadoop/apps/hadoop-2.7.1/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.1.jar pi 2 10

    [root@master hadoop]# hadoop jar /opt/hadoop/apps/hadoop-2.7.1/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.1.jar pi 2 10
    Number of Maps = 2
    Samples per Map = 10
    Wrote input for Map #0
    Wrote input for Map #1
    Starting Job
    21/02/02 13:24:05 INFO client.RMProxy: Connecting to ResourceManager at master/192.168.56.100:8032
    21/02/02 13:24:31 INFO input.FileInputFormat: Total input paths to process : 2
    21/02/02 13:24:39 INFO mapreduce.JobSubmitter: number of splits:2
    21/02/02 13:24:49 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1612235235513_0003
    21/02/02 13:24:56 INFO impl.YarnClientImpl: Submitted application application_1612235235513_0003
    21/02/02 13:24:58 INFO mapreduce.Job: The url to track the job: http://master:8088/proxy/application_1612235235513_0003/
    21/02/02 13:24:58 INFO mapreduce.Job: Running job: job_1612235235513_0003
    21/02/02 13:25:45 INFO mapreduce.Job: Job job_1612235235513_0003 running in uber mode : false
    21/02/02 13:25:45 INFO mapreduce.Job: map 0% reduce 0%
    21/02/02 13:31:03 INFO mapreduce.Job: map 100% reduce 0%
    21/02/02 13:32:08 INFO mapreduce.Job: map 100% reduce 100%
    21/02/02 13:32:47 INFO mapreduce.Job: Job job_1612235235513_0003 completed successfully
    21/02/02 13:33:02 INFO mapreduce.Job: Counters: 49
    File System Counters
    FILE: Number of bytes read=50
    FILE: Number of bytes written=347637
    FILE: Number of read operations=0
    FILE: Number of large read operations=0
    FILE: Number of write operations=0
    HDFS: Number of bytes read=520
    HDFS: Number of bytes written=215
    HDFS: Number of read operations=11
    HDFS: Number of large read operations=0
    HDFS: Number of write operations=3
    Job Counters
    Launched map tasks=2
    Launched reduce tasks=1
    Data-local map tasks=2
    Total time spent by all maps in occupied slots (ms)=612092
    Total time spent by all reduces in occupied slots (ms)=63386
    Total time spent by all map tasks (ms)=612092
    Total time spent by all reduce tasks (ms)=63386
    Total vcore-seconds taken by all map tasks=612092
    Total vcore-seconds taken by all reduce tasks=63386
    Total megabyte-seconds taken by all map tasks=626782208
    Total megabyte-seconds taken by all reduce tasks=64907264
    Map-Reduce Framework
    Map input records=2
    Map output records=4
    Map output bytes=36
    Map output materialized bytes=56
    Input split bytes=284
    Combine input records=0
    Combine output records=0
    Reduce input groups=2
    Reduce shuffle bytes=56
    Reduce input records=4
    Reduce output records=0
    Spilled Records=8
    Shuffled Maps =2
    Failed Shuffles=0
    Merged Map outputs=2
    GC time elapsed (ms)=11536
    CPU time spent (ms)=16840
    Physical memory (bytes) snapshot=444182528
    Virtual memory (bytes) snapshot=6228303872
    Total committed heap usage (bytes)=261935104
    Shuffle Errors
    BAD_ID=0
    CONNECTION=0
    IO_ERROR=0
    WRONG_LENGTH=0
    WRONG_MAP=0
    WRONG_REDUCE=0
    File Input Format Counters
    Bytes Read=236
    File Output Format Counters
    Bytes Written=97
    21/02/02 13:33:04 INFO ipc.Client: Retrying connect to server: master/192.168.56.100:37042. Already tried 0 time(s); retry policy is RetryUpToMaximumCountWithFixedSleep(maxRetries=3, sleepTime=1000 MILLISECONDS)
    21/02/02 13:33:05 INFO ipc.Client: Retrying connect to server: master/192.168.56.100:37042. Already tried 1 time(s); retry policy is RetryUpToMaximumCountWithFixedSleep(maxRetries=3, sleepTime=1000 MILLISECONDS)
    21/02/02 13:33:06 INFO ipc.Client: Retrying connect to server: master/192.168.56.100:37042. Already tried 2 time(s); retry policy is RetryUpToMaximumCountWithFixedSleep(maxRetries=3, sleepTime=1000 MILLISECONDS)
    21/02/02 13:33:07 INFO mapred.ClientServiceDelegate: Application state is completed. FinalApplicationStatus=SUCCEEDED. Redirecting to job history server
    Job Finished in 553.426 seconds
    Estimated value of Pi is 3.80000000000000000000

    #常见命令hdfs dfs -help
    #1.创建文件夹
    hdfs dfs -mkdir -p /hadoop/data/
    #2.从本地拷贝文件到hdfs
    hdfs dfs -copyFromLocal /opt/hadoop/data/data.txt /hadoop/data/person
    #3.复制
    hdfs dfs -cp /hadoop/data/person /hadoop/data/student
    #4.查询文件和文件夹列表
    hdfs dfs -ls  /hadoop/data/
    #5.显示文件内容
    hdfs dfs -text /hadoop/data/student 
    #6.删除文件
    hdfs dfs -rm /hadoop/data/person 
    #7.从hdfs拷贝到本地
    hdfs dfs -copyToLocal /hadoop/data/student /opt/hadoop/data/data1
    #8.从hdfs获取文件到服务器
    hdfs dfs -get /hadoop/data/student 
    #9.从服务器上传文件到hdfs
    hdfs dfs -put student /hadoop/data/student2
    #10.追加文件内容
    hdfs dfs -appendToFile student /hadoop/data/student
    #11.查看文件内容
    hdfs dfs -cat /hadoop/data/student
    #12.删除整个文件夹
    hdfs dfs -rm -r -f /hadoop/data/
    #13.删除文件夹
    hdfs dfs -rmdir -p /hadoop
    爱人不亲,反其仁;治人不治,反其智;礼人不答,反其敬;行有不得,反求诸己
  • 相关阅读:
    SpringBoot和SpringCould的关系
    MyBatis全局配置文件头
    MyBatis的SQL映射文件头
    MyBatis 驼峰式配置 yml配置
    频率组件
    序列化和反序列化
    生成器面试题
    序列化组件
    进程间通信IPC机制
    信号量、event事件和线程queue
  • 原文地址:https://www.cnblogs.com/lina-2015/p/14355664.html
Copyright © 2011-2022 走看看