zoukankan      html  css  js  c++  java
  • bzoj3677: [Apio2014]连珠线

    Description

    在列奥纳多·达·芬奇时期,有一个流行的童年游戏,叫做“连珠线”。不出所料,玩这个游戏只需要珠子和线,珠子从1到礼编号,线分为红色和蓝色。游戏 
    开始时,只有1个珠子,而接下来新的珠子只能通过线由以下两种方式被加入: 
    1.Append(w,杪):-个新的珠子w和一个已有的珠子杪连接,连接使用红线。 
    2.Insert(w,u,v):-个新的珠子w加入到一对通过红线连接的珠子(u,杪) 
    之间,并将红线改成蓝线。也就是将原来u连到1的红线变为u连到w的蓝线与W连到V的蓝线。 
    无论红线还是蓝线,每条线都有一个长度。而在游戏的最后,将得到游戏的 
    最后得分:所有蓝线的长度总和。 
    现在有一个这个游戏的最终结构:你将获取到所有珠子之间的连接情况和所 
    有连线的长度,但是你并不知道每条线的颜色是什么。 
    你现在需要找到这个结构下的最大得分,也就是说:你需要给每条线一个颜 
    色f红色或蓝色),使得这种连线的配色方案是可以通过上述提到的两种连线方式 
    操作得到的,并且游戏得分最大。在本题中你只需要输出最大的得分即可。 

    Input

    第一行是一个正整数n,表示珠子的个数,珠子编号为1刭n。 
    接下来n-l行,每行三个正整数ai,bi(l≤ai10000),表示有一条长度为ci的线连接了珠子ai和珠子bi。 

    Output

    输出一个整数,为游戏的最大得分。 

    Sample Input

    5
    1 2 10
    1 3 40
    1 4 15
    1 5 20

    Sample Output

    60

    HINT

    数据范围满足1≤n≤200000。 

    题解:

    看到这道题,可以从两个角度入手考虑:

    1)对于这棵树最终的形态,考虑哪些边可能是蓝边,并计算最大值

    2)考虑这棵树建树的过程。在一开始只有根节点,后来不断加点过程中有哪些边是蓝边,并计算最大值

    我一开始是从第一个角度考虑的

    通过手动根据样例画图发现,蓝边一定是两条两条地连在一起(因为每次Insert操作都是两边一起变蓝,且这两边是相邻的)

    考虑这两条蓝边(指同时出现的那两条蓝边)可能的连法:

    连法一如两条蓝色边所示,连法二如两条绿色边所示

    一个点若是两条蓝边的中心点,那两条蓝边要么是与自己两个孩子的连边,要么是与自己一个孩子的连边加上自己与父节点的连边

    然后就可以树形dp了

    f[0][i]表示i号点不做两条蓝边中心点:

    f[0][i]=它每一个son可得到的最大值 的和

    f[1][i]表示i号点做两条蓝边中心点,且是连法一:

    f[1][i]=(选两个son,每个son不向i连边可得最大值 的和)+(这两个son到点i边的长度)+(其他son可得到的最大值 的和)

    f[2][i]表示i号点做两条蓝边中心点,是连法二:

    f[2][i]=(选一个son,该son不向i连边可得到的最大值)+(这个son到点i边的长度)+(点i到父节点边的长度)+(其他son可得到的最大值 的和)

    大体思路就是这样,看起来很对吧……

    然而是有问题的!我一开始就以为这样是对的,但发现WA,洛谷上也只得了20分……

    一组反例:

    按照上面的算法,最大值时蓝边应这么连

    但注意两个黄框

    必须先存在4、6才能出现5,必须先存在3、8才能出现2

    对于7,必须2、5都存在且连上了一条边才可以出现

    假设先以9-4-6-5的顺序把5及其子树都出现了,要想再出现2,需要让3、8出现

    但3、8都是叶节点,唯一与2的连边还是蓝边,说明他们只能是一开始连了一条边,之后插入2

    但这时5及其子树已插入完了,3、8没有与已存在的这棵树连在一起

    2想出现的话只能3、8单成一棵树,与题目不符!

    为了保证符合题意,我们考虑第二个角度

    假设已确定根节点了,那么由题意,所有“两条蓝边”都是上面所说的连法二,不可能为连法一

    这样同样可以树形dp,而且比上面的还简单

    (转移方法与上面类似,不详细说了)

    但是这是在确定一个根节点的情况下,而每个点都可能是根节点。

    暴力每次树形dp的话O(n²)伤不起……

    于是考虑换根。

    从上到下换根。每次选当前“根节点”的一个未当过根的子节点作为新的根节点,把当前这个点作为它的子节点,O(1)维护各种信息

    这样就很快了,只是细节需要多多多多多多注意一下

    代码:

    (注:为了方便计算,我多用了几个数组计算不同的东西,细节有点多)

     1 #include<cstdio>
     2 #include<iostream>
     3 #include<algorithm>
     4 #define INF 2100000000
     5 using namespace std;
     6 
     7 const int N = 200005;
     8 int f[4][N],ma[N][2];
     9 
    10 struct node{
    11     int v,len;
    12     node *next;       
    13 }pool[2*N],*h[N];
    14 int cnt;
    15 void addedge(int u,int v,int len){
    16     node *p=&pool[++cnt],*q=&pool[++cnt];
    17     p->v=v;p->next=h[u];h[u]=p;p->len=len;
    18     q->v=u;q->next=h[v];h[v]=q;q->len=len;     
    19 }
    20 
    21 int fa[N],dis[N];
    22 int n;
    23 void dfs(int u){
    24     int v,num1=-INF,num2=-INF,m1=0,m2=0;
    25     f[0][u]=f[1][u]=f[2][u]=f[3][u]=0;
    26     for(node *p=h[u];p;p=p->next)
    27         if(!fa[v=p->v]){
    28             fa[v]=u;
    29             dis[v]=p->len;
    30             dfs(v);
    31             f[0][u]+=f[2][v];
    32             if(f[3][v]>num1) num2=num1,m2=m1,num1=f[3][v],m1=v;
    33             else if(f[3][v]>num2) num2=f[3][v],m2=v;
    34         }
    35     if(m1) f[1][u]=dis[u]+num1+f[0][u];
    36     ma[u][0]=m1;ma[u][1]=m2;
    37     f[2][u]=max(f[1][u],f[0][u]);
    38     f[3][u]=f[0][u]-f[2][u]+dis[u];
    39 }
    40 
    41 int ans=0;
    42 void dfs2(int u){
    43     int v;
    44     int pre[4],mm[2],ff,d;
    45     for(int i=0;i<4;i++) pre[i]=f[i][u];
    46     d=dis[u];
    47     
    48     ans=max(ans,f[0][u]);
    49     for(node *p=h[u];p;p=p->next)
    50         if(fa[v=p->v]==u){
    51             f[0][u]=f[0][u]-f[2][v];
    52             dis[u]=p->len;
    53             if(ma[u][0]==v)
    54                 if(ma[u][1]) f[1][u]=f[0][u]+f[3][ma[u][1]]+dis[u];
    55                 else f[1][u]=0;/**/
    56             else if(ma[u][0]) 
    57                 f[1][u]=f[0][u]+f[3][ma[u][0]]+dis[u];
    58             f[2][u]=max(f[1][u],f[0][u]);
    59             f[3][u]=f[0][u]-f[2][u]+dis[u];
    60             mm[0]=ma[v][0];mm[1]=ma[v][1];
    61             if((mm[0] && f[3][u]>f[3][mm[0]]) || !mm[0]) ma[v][1]=ma[v][0],ma[v][0]=u;
    62             else if((mm[1] && f[3][u]>f[3][mm[1]]) || !mm[1]) ma[v][1]=u;
    63             
    64             ff=f[0][v];
    65             f[0][v]+=f[2][u];
    66             
    67             dfs2(v);
    68             
    69             for(int i=0;i<4;i++) f[i][u]=pre[i];
    70             dis[u]=d;f[0][v]=ff;
    71             ma[v][0]=mm[0];ma[v][1]=mm[1];
    72         }
    73 }
    74 
    75 int main()
    76 {
    77     int i,a,b,c;
    78     scanf("%d",&n);
    79     for(i=1;i<n;i++)
    80         scanf("%d%d%d",&a,&b,&c),addedge(a,b,c);
    81         
    82     fa[1]=-1;dis[1]=0;
    83     dfs(1);
    84     dfs2(1);
    85     
    86     printf("%d
    ",ans);
    87     
    88     return 0;    
    89 }
    View Code
    既然选择了远方,便只顾风雨兼程
  • 相关阅读:
    css 文本超过指定行数,显示省略号
    CSS 使radio和checkbox框,和文字对齐平行
    C# 使用InputStream接收 解析表单参数
    CSS 控制文本超出宽度,显示省略号
    C# 将http在线文件,保存到服务器指定位置
    C# Get请求
    C# POST请求
    js 使用XMLHttpRequest 上传文件,显示进度条
    js 验证字符长度,一个中文2个字符,英文和数字为1个字符
    iOS Carthage集成SnapKit
  • 原文地址:https://www.cnblogs.com/lindalee/p/7994621.html
Copyright © 2011-2022 走看看