zoukankan      html  css  js  c++  java
  • 《用Python玩转数据》项目—线性回归分析入门之波士顿房价预测(二)

    接上一部分,此篇将用tensorflow建立神经网络,对波士顿房价数据进行简单建模预测。

    二、使用tensorflow拟合boston房价datasets

    1、数据处理依然利用sklearn来分训练集和测试集。

    2、使用一层隐藏层的简单网络,试下来用当前这组超参数收敛较快,准确率也可以。

    3、激活函数使用relu来引入非线性因子。

    4、原本想使用如下方式来动态更新lr,但是尝试下来效果不明显,就索性不要了。

    def learning_rate(epoch):
        if epoch < 200:
            return 0.01
        if epoch < 400:
            return 0.001
        if epoch < 800:
            return 1e-4
    

     好了,废话不多说了,看代码如下:

    from sklearn import datasets
    from sklearn.model_selection import train_test_split
    import os
    import matplotlib.pyplot as plt
    import numpy as np
    import tensorflow as tf
    
    dataset = datasets.load_boston()
    x = dataset.data
    target = dataset.target
    y = np.reshape(target,(len(target), 1))
    
    x_train, x_verify, y_train, y_verify = train_test_split(x, y, random_state=1)
    y_train = y_train.reshape(-1)
    train_data = np.insert(x_train, 0, values=y_train, axis=1)
    
    
    def r_square(y_verify, y_pred):
        var = np.var(y_verify)
        mse = np.sum(np.power((y_verify-y_pred.reshape(-1,1)), 2))/len(y_verify)
        res = 1 - mse/var
        print('var:', var)
        print('MSE-ljj:', mse)
        print('R2-ljj:', res)
    
    
    EPOCH = 3000
    lr = tf.placeholder(tf.float32, [], 'lr')
    x = tf.placeholder(tf.float32, shape=[None, 13], name='input_feature_x')
    y = tf.placeholder(tf.float32, shape=[None, 1], name='input_feature_y')
    
    W = tf.Variable(tf.truncated_normal(shape=[13, 10], stddev=0.1))
    b = tf.Variable(tf.constant(0., shape=[10]))
    
    W2 = tf.Variable(tf.truncated_normal(shape=[10, 1], stddev=0.1))
    b2 = tf.Variable(tf.constant(0., shape=[1]))
    
    
    with tf.Session() as sess:
        hidden1 = tf.nn.relu(tf.add(tf.matmul(x, W), b))
    
        y_predict = tf.add(tf.matmul(hidden1, W2), b2)
        loss = tf.reduce_mean(tf.reduce_sum(tf.pow(y-y_predict,2), reduction_indices=[1]))
        print(loss.shape)
        train = tf.train.AdamOptimizer(learning_rate=lr).minimize(loss)
    
        sess.run(tf.global_variables_initializer())
        saver = tf.train.Saver()
        W_res = 0
        b_res = 0
        try:
            last_chk_path = tf.train.latest_checkpoint(checkpoint_dir='/home/ljj/PycharmProjects/mooc/train_record')
            saver.restore(sess, save_path=last_chk_path)
        except:
            print('no save file to recover-----------start new train instead--------')
    
            loss_list = []
            over_flag = 0
            for i in range(EPOCH):
                if over_flag ==1:
                        break
                y_t = train_data[:, 0].reshape(-1, 1)
                _, W_res, b_res, loss_train = sess.run([train, W, b, loss],
                                                       feed_dict={x: train_data[:, 1:],
                                                                  y: y_t,
                                                                  lr: 0.01})
    
                checkpoint_file = os.path.join('/home/ljj/PycharmProjects/mooc/train_record', 'checkpoint')
                saver.save(sess, checkpoint_file, global_step=i)
                loss_list.append(loss_train)
                if loss_train < 0.2:
                    over_flag = 1
                    break
                if i %500 == 0:
                    print('EPOCH = {:}, train_loss ={:}'.format(i, loss_train))
                if i % 500 == 0:
                    r = loss.eval(session=sess, feed_dict={x: x_verify,
                                                           y: y_verify,
                                                           lr: 0.01})
                    print('verify_loss = ',r)
                np.random.shuffle(train_data)
    
            plt.plot(range(len(loss_list)-1), loss_list[1:], 'r')
            plt.show()
    
        print('final loss = ',loss.eval(session=sess, feed_dict={x: x_verify,
                                               y: y_verify,
                                               lr: 0.01}))
    
        y_pred = sess.run(y_predict, feed_dict={x: x_verify,
                                               y: y_verify,
                                               lr: 0.01})
    
        plt.subplot(2,1,1)
        plt.xlim([0,50])
        plt.plot(range(len(y_verify)), y_pred,'b--')
        plt.plot(range(len(y_verify)), y_verify,'r')
        plt.title('validation')
    
        y_ss = sess.run(y_predict, feed_dict={x: x_train,
                                               y: y_train.reshape(-1, 1),
                                               lr: 0.01})
        plt.subplot(2,1,2)
        plt.xlim([0,50])
        plt.plot(range(len(y_train)), y_ss,'r--')
        plt.plot(range(len(y_train)), y_train,'b')
        plt.title('train')
    
        plt.savefig('tf.png')
        plt.show()
    
        r_square(y_verify, y_pred)
    

    训练了大概3000个epoch后,保存模型,之后可以多次训练,但是loss基本收敛了,没有太大变化。

    输出结果如下:

    final loss =  15.117827
    var: 99.0584735569471
    MSE-ljj: 15.11782691349897
    R2-ljj: 0.8473848185757882

    从图像上看,拟合效果也是一般,再拿一个放大版本的validation图,同样取前50个样本,这样方便和之前的线性回归模型对比。

    最后我们还是用数据来说明:

    tf模型结果中,

    R2:0.847   > 0. 779

    MSE:15.1  < 21.8

    都比sklearn的线性回归结果要好。所以,此tf模型对波士顿房价数据的可解释性更强。

  • 相关阅读:
    简单批处理语法结构
    简单批处理常用命令
    简单批处理符号简介
    简单批处理内部命令
    jQuery操作DOM
    jQuery中的事件与动画
    jQuery选择器
    初始面向对象
    初识jQuery
    操作DOM
  • 原文地址:https://www.cnblogs.com/lingjiajun/p/10015933.html
Copyright © 2011-2022 走看看