zoukankan      html  css  js  c++  java
  • 基于树莓派与YOLOv3模型的人体目标检测小车(二)

    上篇文章介绍了如何搭建深度学习环境,在Ubuntu18.04TLS上搭建起了 CUDA:9.0+cuDNN7.0+tensorflow-gpu 1.9 的训练环境。本篇文章将介绍如何制作自己的数据集,并训练模型。

    本文训练数据集包括从VOC数据集中提取出6095张人体图片,以及使用LabelImg工具标注的200张python爬虫程序获取的人体图片作为补充。

    一、爬取人体图片并标记
    # coding=utf-8
    """根据搜索词下载百度图片"""
    import re
    import sys
    import urllib
    import requests
    
    
    def getPage(keyword, page, n):
        page = page * n
        keyword = urllib.parse.quote(keyword, safe='/')
        url_begin = "http://image.baidu.com/search/flip?tn=baiduimage&ie=utf-8&word="
        url = url_begin + keyword + "&pn=" + str(page) + "&gsm=" + str(hex(page)) + "&ct=&ic=0&lm=-1&width=0&height=0"
        return url
    
    
    def get_onepage_urls(onepageurl):
        try:
            html = requests.get(onepageurl).text
        except Exception as e:
            print(e)
            pic_urls = []
            return pic_urls
        pic_urls = re.findall('"objURL":"(.*?)",', html, re.S)
        return pic_urls
    
    
    def down_pic(pic_urls):
        """给出图片链接列表, 下载所有图片"""
        for i, pic_url in enumerate(pic_urls):
            try:
                pic = requests.get(pic_url, timeout=15)
                string = str(i + 1) + '.jpg'
                with open(string, 'wb') as f:
                    f.write(pic.content)
                    print('成功下载第%s张图片: %s' % (str(i + 1), str(pic_url)))
            except Exception as e:
                print('下载第%s张图片时失败: %s' % (str(i + 1), str(pic_url)))
                print(e)
                continue
    
    
    if __name__ == '__main__':
        keyword = '行人图片'  # 关键词, 改为你想输入的词即可, 相当于在百度图片里搜索一样
        page_begin = 0
        page_number = 100
        image_number = 3
        all_pic_urls = []
        while 1:
            if page_begin > image_number:
                break
            print("第%d次请求数据", [page_begin])
            url = getPage(keyword, page_begin, page_number)
            onepage_urls = get_onepage_urls(url)
            page_begin += 1
    
            all_pic_urls.extend(onepage_urls)
    
        down_pic(list(set(all_pic_urls)))
    

    使用labelimg标记图片

    二、从VOC数据集里提取出人体图片
    import os
    import os.path
    import shutil
    
    fileDir_ann = "D:\VOC\VOCdevkit\VOC2012\Annotations"
    fileDir_img = "D:\VOC\VOCdevkit\VOC2012\JPEGImages\"
    saveDir_img = "D:\VOC\VOCdevkit\VOC2012\JPEGImages_ssd\"
    
    if not os.path.exists(saveDir_img):
        os.mkdir(saveDir_img)
    
    names = locals()
    
    for files in os.walk(fileDir_ann):
        for file in files[2]:
    
    
    
            saveDir_ann = "D:\VOC\VOCdevkit\VOC2012\Annotations_ssd\"
            if not os.path.exists(saveDir_ann):
                os.mkdir(saveDir_ann)
    
            fp = open(fileDir_ann + '\' + file)
            saveDir_ann = saveDir_ann + file
            fp_w = open(saveDir_ann, 'w')
            classes = ['aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', '>cat<', 'chair', 'cow',
                       'diningtable', 
                       'dog', 'horse', 'motorbike', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor', 'person']
    
            lines = fp.readlines()
    
            ind_start = []
            ind_end = []
            lines_id_start = lines[:]
            lines_id_end = lines[:]
    
            while "	<object>
    " in lines_id_start:
                a = lines_id_start.index("	<object>
    ")
                ind_start.append(a)
                lines_id_start[a] = "delete"
    
            while "	</object>
    " in lines_id_end:
                b = lines_id_end.index("	</object>
    ")
                ind_end.append(b)
                lines_id_end[b] = "delete"
    
            i = 0
            for k in range(0, len(ind_start)):
                for j in range(0, len(classes)):
                    if classes[j] in lines[ind_start[i] + 1]:
                        a = ind_start[i]
                        names['block%d' % k] = [lines[a], lines[a + 1], 
                                                lines[a + 2], lines[a + 3], lines[a + 4], 
                                                lines[a + 5], lines[a + 6], lines[a + 7], 
                                                lines[a + 8], lines[a + 9], lines[a + 10], 
                                                lines[ind_end[i]]]
                        break
                i += 1
    
            classes1 = '		<name>person</name>
    '
    
    
    
            string_start = lines[0:ind_start[0]]
            string_end = [lines[len(lines) - 1]]
    
            a = 0
            for k in range(0, len(ind_start)):
                if classes1 in names['block%d' % k]:
                    a += 1
                    string_start += names['block%d' % k]
    
    
    
            string_start += string_end
            for c in range(0, len(string_start)):
                fp_w.write(string_start[c])
            fp_w.close()
    
            if a == 0:
                os.remove(saveDir_ann)
            else:
                name_img = fileDir_img + os.path.splitext(file)[0] + ".jpg"
                shutil.copy(name_img, saveDir_img)
            fp.close()
    
    
    三、修改YOLOv3 tiny 配置文件
    • yolov3-tiny.cfg

    batch = 64

    max_batchs=500200 迭代次数

    learning_rate = 0.001

    steps = 400000,450000 scales =.1,.1 学习率在400000和450000次时缩小10倍

    class = 1 设置单类别

    • 删除voc.names中其余名字,只保留person
    • 修改voc.data中classes值为1
    四、下载预训练权重开始训练

    预训练权重可以减少前期的迭代次数,加速训练过程。

    wget https://pjreddie.com/media/files/darknet53.conv.74
    
    

    开始训练:

    ./darknet detector train cfg/voc.data cfg/yolov3-voc-tiny.cfg darknet53.conv.74
    
    

    通过绘制训练过程的loss曲线可知,开始时loss下降较快,之后开始在一水平线上波动。

    训练结束得到yolov3-voc_final.weights模型文件。

  • 相关阅读:
    看完两本书
    今夜,有点难过
    学习总结
    杂谈改变个人习惯
    最近一个月的工作学习总结
    lab项目之一阿森纳赛事指南客户端版本
    工资类程序数据库处理讨论 [数据加载(二)]
    SQL数值倍率实现问题....
    想用GDI+2.0做设计器,但在实现过程中遇到大麻烦
    这几天做工资类程序郁闷了,想写点东西理一下思路
  • 原文地址:https://www.cnblogs.com/lingluan533/p/12606006.html
Copyright © 2011-2022 走看看