zoukankan      html  css  js  c++  java
  • Linux-3.14.12内存管理笔记【伙伴管理算法(4)】

    此处承接前面未深入分析的页面释放部分,主要详细分析伙伴管理算法中页面释放的实现。页面释放的函数入口是__free_page(),其实则是一个宏定义。

    具体实现:

    【file:/include/linux/gfp.h】
    #define __free_page(page) __free_pages((page), 0)
    
    

    而__free_pages()的实现:

    【file:/mm/page_alloc.c】
    void __free_pages(struct page *page, unsigned int order)
    {
        if (put_page_testzero(page)) {
            if (order == 0)
                free_hot_cold_page(page, 0);
            else
                __free_pages_ok(page, order);
        }
    }
    

    其中put_page_testzero()是对page结构的_count引用计数做原子减及测试,用于检查内存页面是否仍被使用,如果不再使用,则进行释放。其中order表示页面数量,如果释放的是单页,则会调用free_hot_cold_page()将页面释放至per-cpu page缓存中,而不是伙伴管理算法;真正的释放至伙伴管理算法的是__free_pages_ok(),同时也是用于多个页面释放的情况。

    此处接着则由free_hot_cold_page()开始分析:

    【file:/mm/page_alloc.c】
    /*
     * Free a 0-order page
     * cold == 1 ? free a cold page : free a hot page
     */
    void free_hot_cold_page(struct page *page, int cold)
    {
        struct zone *zone = page_zone(page);
        struct per_cpu_pages *pcp;
        unsigned long flags;
        int migratetype;
     
        if (!free_pages_prepare(page, 0))
            return;
     
        migratetype = get_pageblock_migratetype(page);
        set_freepage_migratetype(page, migratetype);
        local_irq_save(flags);
        __count_vm_event(PGFREE);
     
        /*
         * We only track unmovable, reclaimable and movable on pcp lists.
         * Free ISOLATE pages back to the allocator because they are being
         * offlined but treat RESERVE as movable pages so we can get those
         * areas back if necessary. Otherwise, we may have to free
         * excessively into the page allocator
         */
        if (migratetype >= MIGRATE_PCPTYPES) {
            if (unlikely(is_migrate_isolate(migratetype))) {
                free_one_page(zone, page, 0, migratetype);
                goto out;
            }
            migratetype = MIGRATE_MOVABLE;
        }
     
        pcp = &this_cpu_ptr(zone->pageset)->pcp;
        if (cold)
            list_add_tail(&page->lru, &pcp->lists[migratetype]);
        else
            list_add(&page->lru, &pcp->lists[migratetype]);
        pcp->count++;
        if (pcp->count >= pcp->high) {
            unsigned long batch = ACCESS_ONCE(pcp->batch);
            free_pcppages_bulk(zone, batch, pcp);
            pcp->count -= batch;
        }
     
    out:
        local_irq_restore(flags);
    }
    

    先看一下free_pages_prepare()的实现:

    【file:/mm/page_alloc.c】
    static bool free_pages_prepare(struct page *page, unsigned int order)
    {
        int i;
        int bad = 0;
     
        trace_mm_page_free(page, order);
        kmemcheck_free_shadow(page, order);
     
        if (PageAnon(page))
            page->mapping = NULL;
        for (i = 0; i < (1 << order); i++)
            bad += free_pages_check(page + i);
        if (bad)
            return false;
     
        if (!PageHighMem(page)) {
            debug_check_no_locks_freed(page_address(page),
                           PAGE_SIZE << order);
            debug_check_no_obj_freed(page_address(page),
                           PAGE_SIZE << order);
        }
        arch_free_page(page, order);
        kernel_map_pages(page, 1 << order, 0);
     
        return true;
    }
    

    其中trace_mm_page_free()用于trace追踪机制;而kmemcheck_free_shadow()用于内存检测工具kmemcheck,如果未定义CONFIG_KMEMCHECK的情况下,它是一个空函数。接着后面的PageAnon()等都是用于检查页面状态的情况,以判断页面是否允许释放,避免错误释放页面。由此可知该函数主要作用是检查和调试。

    接着回到free_hot_cold_page()函数中,get_pageblock_migratetype()和set_freepage_migratetype()分别是获取和设置页面的迁移类型,即设置到page->index;local_irq_save()和末尾的local_irq_restore()则用于保存恢复中断请求标识。

    if (migratetype >= MIGRATE_PCPTYPES) {
    
        if (unlikely(is_migrate_isolate(migratetype))) {
    
            free_one_page(zone, page, 0, migratetype);
    
            goto out;
    
        }
    
        migratetype = MIGRATE_MOVABLE;
    
    }
    

    这里面的MIGRATE_PCPTYPES用来表示每CPU页框高速缓存的数据结构中的链表的迁移类型数目,如果某个页面类型大于MIGRATE_PCPTYPES则表示其可挂到可移动列表中,如果迁移类型是MIGRATE_ISOLATE则直接将该其释放到伙伴管理算法中。

    末尾部分:

        pcp = &this_cpu_ptr(zone->pageset)->pcp;
    
        if (cold)
    
            list_add_tail(&page->lru, &pcp->lists[migratetype]);
    
        else
    
            list_add(&page->lru, &pcp->lists[migratetype]);
    
        pcp->count++;
    
        if (pcp->count >= pcp->high) {
    
            unsigned long batch = ACCESS_ONCE(pcp->batch);
    
            free_pcppages_bulk(zone, batch, pcp);
    
            pcp->count -= batch;
    
        }
    

    其中pcp表示内存管理区的每CPU管理结构,cold表示冷热页面,如果是冷页就将其挂接到对应迁移类型的链表尾,而若是热页则挂接到对应迁移类型的链表头。其中if (pcp->count >= pcp->high)判断值得注意,其用于如果释放的页面超过了每CPU缓存的最大页面数时,则将其批量释放至伙伴管理算法中,其中批量数为pcp->batch。

    具体分析一下释放至伙伴管理算法的实现free_pcppages_bulk():

    【file:/mm/page_alloc.c】
    /*
     * Frees a number of pages from the PCP lists
     * Assumes all pages on list are in same zone, and of same order.
     * count is the number of pages to free.
     *
     * If the zone was previously in an "all pages pinned" state then look to
     * see if this freeing clears that state.
     *
     * And clear the zone's pages_scanned counter, to hold off the "all pages are
     * pinned" detection logic.
     */
    static void free_pcppages_bulk(struct zone *zone, int count,
                        struct per_cpu_pages *pcp)
    {
        int migratetype = 0;
        int batch_free = 0;
        int to_free = count;
     
        spin_lock(&zone->lock);
        zone->pages_scanned = 0;
     
        while (to_free) {
            struct page *page;
            struct list_head *list;
     
            /*
             * Remove pages from lists in a round-robin fashion. A
             * batch_free count is maintained that is incremented when an
             * empty list is encountered. This is so more pages are freed
             * off fuller lists instead of spinning excessively around empty
             * lists
             */
            do {
                batch_free++;
                if (++migratetype == MIGRATE_PCPTYPES)
                    migratetype = 0;
                list = &pcp->lists[migratetype];
            } while (list_empty(list));
     
            /* This is the only non-empty list. Free them all. */
            if (batch_free == MIGRATE_PCPTYPES)
                batch_free = to_free;
     
            do {
                int mt; /* migratetype of the to-be-freed page */
     
                page = list_entry(list->prev, struct page, lru);
                /* must delete as __free_one_page list manipulates */
                list_del(&page->lru);
                mt = get_freepage_migratetype(page);
                /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
                __free_one_page(page, zone, 0, mt);
                trace_mm_page_pcpu_drain(page, 0, mt);
                if (likely(!is_migrate_isolate_page(page))) {
                    __mod_zone_page_state(zone, NR_FREE_PAGES, 1);
                    if (is_migrate_cma(mt))
                        __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
                }
            } while (--to_free && --batch_free && !list_empty(list));
        }
        spin_unlock(&zone->lock);
    }
    

    里面while大循环用于计数释放指定批量数的页面。其中释放方式是先自MIGRATE_UNMOVABLE迁移类型起(止于MIGRATE_PCPTYPES迁移类型),遍历各个链表统计其链表中页面数:

    do {
    
        batch_free++;
    
        if (++migratetype == MIGRATE_PCPTYPES)
    
            migratetype = 0;
    
        list = &pcp->lists[migratetype];
    
    } while (list_empty(list));
    

    如果只有MIGRATE_PCPTYPES迁移类型的链表为非空链表,则全部页面将从该链表中释放。

    后面的do{}while()里面,其先将页面从lru链表中去除,然后获取页面的迁移类型,通过__free_one_page()释放页面,最后使用__mod_zone_page_state()修改管理区的状态值。

    着重分析一下__free_one_page()的实现:

    【file:/mm/page_alloc.c】
    /*
     * Freeing function for a buddy system allocator.
     *
     * The concept of a buddy system is to maintain direct-mapped table
     * (containing bit values) for memory blocks of various "orders".
     * The bottom level table contains the map for the smallest allocatable
     * units of memory (here, pages), and each level above it describes
     * pairs of units from the levels below, hence, "buddies".
     * At a high level, all that happens here is marking the table entry
     * at the bottom level available, and propagating the changes upward
     * as necessary, plus some accounting needed to play nicely with other
     * parts of the VM system.
     * At each level, we keep a list of pages, which are heads of continuous
     * free pages of length of (1 << order) and marked with _mapcount
     * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
     * field.
     * So when we are allocating or freeing one, we can derive the state of the
     * other. That is, if we allocate a small block, and both were
     * free, the remainder of the region must be split into blocks.
     * If a block is freed, and its buddy is also free, then this
     * triggers coalescing into a block of larger size.
     *
     * -- nyc
     */
     
    static inline void __free_one_page(struct page *page,
            struct zone *zone, unsigned int order,
            int migratetype)
    {
        unsigned long page_idx;
        unsigned long combined_idx;
        unsigned long uninitialized_var(buddy_idx);
        struct page *buddy;
     
        VM_BUG_ON(!zone_is_initialized(zone));
     
        if (unlikely(PageCompound(page)))
            if (unlikely(destroy_compound_page(page, order)))
                return;
     
        VM_BUG_ON(migratetype == -1);
     
        page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
     
        VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
        VM_BUG_ON_PAGE(bad_range(zone, page), page);
     
        while (order < MAX_ORDER-1) {
            buddy_idx = __find_buddy_index(page_idx, order);
            buddy = page + (buddy_idx - page_idx);
            if (!page_is_buddy(page, buddy, order))
                break;
            /*
             * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
             * merge with it and move up one order.
             */
            if (page_is_guard(buddy)) {
                clear_page_guard_flag(buddy);
                set_page_private(page, 0);
                __mod_zone_freepage_state(zone, 1 << order,
                              migratetype);
            } else {
                list_del(&buddy->lru);
                zone->free_area[order].nr_free--;
                rmv_page_order(buddy);
            }
            combined_idx = buddy_idx & page_idx;
            page = page + (combined_idx - page_idx);
            page_idx = combined_idx;
            order++;
        }
        set_page_order(page, order);
     
        /*
         * If this is not the largest possible page, check if the buddy
         * of the next-highest order is free. If it is, it's possible
         * that pages are being freed that will coalesce soon. In case,
         * that is happening, add the free page to the tail of the list
         * so it's less likely to be used soon and more likely to be merged
         * as a higher order page
         */
        if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
            struct page *higher_page, *higher_buddy;
            combined_idx = buddy_idx & page_idx;
            higher_page = page + (combined_idx - page_idx);
            buddy_idx = __find_buddy_index(combined_idx, order + 1);
            higher_buddy = higher_page + (buddy_idx - combined_idx);
            if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
                list_add_tail(&page->lru,
                    &zone->free_area[order].free_list[migratetype]);
                goto out;
            }
        }
     
        list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
    out:
        zone->free_area[order].nr_free++;
    }
    

    于while (order < MAX_ORDER-1)前面主要是对释放的页面进行检查校验操作。而while循环内,通过__find_buddy_index()获取与当前释放的页面处于同一阶的伙伴页面索引值,同时藉此索引值计算出伙伴页面地址,并做伙伴页面检查以确定其是否可以合并,若否则退出;接着if (page_is_guard(buddy))用于对页面的debug_flags成员做检查,由于未配置CONFIG_DEBUG_PAGEALLOC,page_is_guard()固定返回false;则剩下的操作主要就是将页面从分配链中摘除,同时将页面合并并将其处于的阶提升一级。

    退出while循环后,通过set_page_order()设置页面最终可合并成为的管理阶。最后判断当前合并的页面是否为最大阶,否则将页面放至伙伴管理链表的末尾,避免其过早被分配,得以机会进一步与高阶页面进行合并。末了,将最后的挂入的阶的空闲计数加1。

    至此伙伴管理算法的页面释放完毕。

    而__free_pages_ok()的页面释放实现调用栈则是:

    __free_pages_ok()
    
    —>free_one_page()
    
    —>__free_one_page()
    

    殊途同归,最终还是__free_one_page()来释放,具体的过程就不再仔细分析了。

  • 相关阅读:
    apiCode/1/1.1/1.1.1
    ZOJ 3195 Design the city LCA转RMQ
    IOS学习之路十二(UITableView下拉刷新页面)
    ASP.NET 缓存技术分析
    电信支撑系统
    android提权
    awk
    linux高效shell命令总结
    C关键字typedef及argc,argv,env参数含义
    2013年6月编程语言排行榜,C语言位据第一位
  • 原文地址:https://www.cnblogs.com/linhaostudy/p/12064512.html
Copyright © 2011-2022 走看看