整数: Zahlen(德)
复数: Complex number
实数: Real number
自然数: Natural number
有理数: Quotient(德,"商")
整数集的Z是德文Zahlen(数字)的首字母
有理数集的Q是英语/德语Quotient(商)的首字母,因为有理数都可以写成两整数的商
实数R代表Real Number(实数),复数的C代表Complex Number(复数)
自然数N代表Natural Number(自然数)
最早使用Z作为整数集的标记的数学家是朗道,用的是Z上加以横杠的记号,而最终确定以Z作为符号的是20世纪30年代法国的布尔巴基(一个数学家秘密会社),在他们的著作《代数》第一章中使用了这个符号。 (参考资料:Earliest Uses Of Symbols Of Number Theory)
(摘自:科学松鼠会)
附:
1.用Q表示有理数集:
由于两个数相比的结果(商)叫做有理数,商英文是quotient,所以就用Q了
2.用Z表示整数集:
这个涉及到一个德国女数学家对环理论的贡献,她叫诺特。
1920年,她已引入“左模”,“右模”的概念。1921年写出的<<整环的理想理论>>是交换代数发展的里程碑。其中,诺特在引入整数环概念的时候(整数集本身也是一个数环)。
她是德国人,德语中的整数叫做Zahlen,于是当时她将整数环记作Z,从那时候起整数集就用Z表示了。
3.用N表示自然数集:
自然数:Natural number
4.用R表示实数集:
实数:Real number
5.用C表示复数集:
复数:Complex number