zoukankan      html  css  js  c++  java
  • flink批处理中的source以及sink介绍

     

    一、flink在批处理中常见的source

      flink在批处理中常见的source主要有两大类:  

        1.基于本地集合的source(Collection-based-source)   

        2.基于文件的source(File-based-source)

     1.基于本地集合的source

          在flink最常见的创建DataSet方式有三种。   

    1.使用env.fromElements(),这种方式也支持Tuple,自定义对象等复合形式。   

    2.使用env.fromCollection(),这种方式支持多种Collection的具体类型   

    3.使用env.generateSequence()方法创建基于Sequence的DataSet

    import org.apache.flink.api.scala.{DataSet, ExecutionEnvironment, _}
    import scala.collection.immutable.{Queue, Stack}
    import scala.collection.mutable
    import scala.collection.mutable.{ArrayBuffer, ListBuffer}
    
    object DataSource001 {
      def main(args: Array[String]): Unit = {
        val env = ExecutionEnvironment.getExecutionEnvironment
        //0.用element创建DataSet(fromElements)
        val ds0: DataSet[String] = env.fromElements("spark", "flink")
        ds0.print()
    
        //1.用Tuple创建DataSet(fromElements)
        val ds1: DataSet[(Int, String)] = env.fromElements((1, "spark"), (2, "flink"))
        ds1.print()
    
        //2.用Array创建DataSet
        val ds2: DataSet[String] = env.fromCollection(Array("spark", "flink"))
        ds2.print()
    
        //3.用ArrayBuffer创建DataSet
        val ds3: DataSet[String] = env.fromCollection(ArrayBuffer("spark", "flink"))
        ds3.print()
    
        //4.用List创建DataSet
        val ds4: DataSet[String] = env.fromCollection(List("spark", "flink"))
        ds4.print()
    
        //5.用List创建DataSet
        val ds5: DataSet[String] = env.fromCollection(ListBuffer("spark", "flink"))
        ds5.print()
    
        //6.用Vector创建DataSet
        val ds6: DataSet[String] = env.fromCollection(Vector("spark", "flink"))
        ds6.print()
    
        //7.用Queue创建DataSet
        val ds7: DataSet[String] = env.fromCollection(Queue("spark", "flink"))
        ds7.print()
    
        //8.用Stack创建DataSet
        val ds8: DataSet[String] = env.fromCollection(Stack("spark", "flink"))
        ds8.print()
    
        //9.用Stream创建DataSet(Stream相当于lazy List,避免在中间过程中生成不必要的集合)
        val ds9: DataSet[String] = env.fromCollection(Stream("spark", "flink"))
        ds9.print()
    
        //10.用Seq创建DataSet
        val ds10: DataSet[String] = env.fromCollection(Seq("spark", "flink"))
        ds10.print()
    
        //11.用Set创建DataSet
        val ds11: DataSet[String] = env.fromCollection(Set("spark", "flink"))
        ds11.print()
    
        //12.用Iterable创建DataSet
        val ds12: DataSet[String] = env.fromCollection(Iterable("spark", "flink"))
        ds12.print()
    
        //13.用ArraySeq创建DataSet
        val ds13: DataSet[String] = env.fromCollection(mutable.ArraySeq("spark", "flink"))
        ds13.print()
    
        //14.用ArrayStack创建DataSet
        val ds14: DataSet[String] = env.fromCollection(mutable.ArrayStack("spark", "flink"))
        ds14.print()
    
        //15.用Map创建DataSet
        val ds15: DataSet[(Int, String)] = env.fromCollection(Map(1 -> "spark", 2 -> "flink"))
        ds15.print()
    
        //16.用Range创建DataSet
        val ds16: DataSet[Int] = env.fromCollection(Range(1, 9))
        ds16.print()
    
        //17.用fromElements创建DataSet
        val ds17: DataSet[Long] =  env.generateSequence(1,9)
        ds17.print()
      }
    }

    2.基于文件的source(File-based-source)

    flink支持多种存储设备上的文件,包括本地文件,hdfs文件,alluxio文件等。
    flink支持多种文件的存储格式,包括text文件,CSV文件等。
    import org.apache.flink.api.scala.{DataSet, ExecutionEnvironment,_}
    
    object DataSource002 {
      def main(args: Array[String]): Unit = {
    
        val env = ExecutionEnvironment.getExecutionEnvironment
        //1.读取本地文本文件,本地文件以file://开头
        val ds1: DataSet[String] = env.readTextFile("file:///Applications/flink-1.1.3/README.txt")
        ds1.print()
    
        //2.读取hdfs文本文件,hdfs文件以hdfs://开头,不指定master的短URL
        val ds2: DataSet[String] = env.readTextFile("hdfs:///input/flink/README.txt")
        ds2.print()
    
        //3.读取hdfs CSV文件,转化为tuple
        val path = "hdfs://qingcheng11:9000/input/flink/sales.csv"
        val ds3 = env.readCsvFile[(String, Int, Int, Double)](
          filePath = path,
          lineDelimiter = "
    ",
          fieldDelimiter = ",",
          lenient = false,
          ignoreFirstLine = true,
          includedFields = Array(0, 1, 2, 3))
        ds3.print()
    
        //4.读取hdfs CSV文件,转化为case class
        case class Sales(transactionId: String, customerId: Int, itemId: Int, amountPaid: Double)
        val ds4 = env.readCsvFile[Sales](
          filePath = path,
          lineDelimiter = "
    ",
          fieldDelimiter = ",",
          lenient = false,
          ignoreFirstLine = true,
          includedFields = Array(0, 1, 2, 3),
          pojoFields = Array("transactionId", "customerId", "itemId", "amountPaid")
        )
        ds4.print()
      }
    }

    3.基于文件的source(遍历目录)

    flink支持对一个文件目录内的所有文件,包括所有子目录中的所有文件的遍历访问方式。
    import org.apache.flink.api.scala.ExecutionEnvironment
    import org.apache.flink.configuration.Configuration
    
    /**
      * 递归读取hdfs目录中的所有文件,会遍历各级子目录
      */
    object DataSource003 {
      def main(args: Array[String]): Unit = {
        val env = ExecutionEnvironment.getExecutionEnvironment
        // create a configuration object
        val parameters = new Configuration
        // set the recursive enumeration parameter
        parameters.setBoolean("recursive.file.enumeration", true)
        // pass the configuration to the data source
        val ds1 = env.readTextFile("hdfs:///input/flink").withParameters(parameters)
        ds1.print()
      }
    }
     
     
  • 相关阅读:
    套接字I/O模型-WSAAsyncSelect
    套接字I/O模型-完成端口IOCP
    套接字I/O模型-WSAEventSelect(转载)
    Win7+VS2010环境下CEGUI 0.8.4编译过程详解
    数组去重统计排序
    计算当前月有几天
    前端开发仓库
    Jquery中bind(), live(), on(), delegate()四种注册事件的优缺点,建议使用on()
    图表那些事
    图标字体,矢量图标
  • 原文地址:https://www.cnblogs.com/linkmust/p/10896051.html
Copyright © 2011-2022 走看看