zoukankan      html  css  js  c++  java
  • Redundant Paths-POJ3177(强连通缩点)

    http://poj.org/problem?id=3177

    题目大意:给你几个点和几条边   求你能加几条边  就可以让每一个点到达任意点都有两种方法。

    Description

    In order to get from one of the F (1 <= F <= 5,000) grazing fields (which are numbered 1..F) to another field, Bessie and the rest of the herd are forced to cross near the Tree of Rotten Apples. The cows are now tired of often being forced to take a particular path and want to build some new paths so that they will always have a choice of at least two separate routes between any pair of fields. They currently have at least one route between each pair of fields and want to have at least two. Of course, they can only travel on Official Paths when they move from one field to another. 

    Given a description of the current set of R (F-1 <= R <= 10,000) paths that each connect exactly two different fields, determine the minimum number of new paths (each of which connects exactly two fields) that must be built so that there are at least two separate routes between any pair of fields. Routes are considered separate if they use none of the same paths, even if they visit the same intermediate field along the way. 

    There might already be more than one paths between the same pair of fields, and you may also build a new path that connects the same fields as some other path.

    Input

    Line 1: Two space-separated integers: F and R 

    Lines 2..R+1: Each line contains two space-separated integers which are the fields at the endpoints of some path.

    Output

    Line 1: A single integer that is the number of new paths that must be built.

    Sample Input

    7 7
    1 2
    2 3
    3 4
    2 5
    4 5
    5 6
    5 7

    Sample Output

    2

    Hint

    Explanation of the sample: 

    One visualization of the paths is: 
       1   2   3
    +---+---+
    | |
    | |
    6 +---+---+ 4
    / 5
    /
    /
    7 +
    Building new paths from 1 to 6 and from 4 to 7 satisfies the conditions. 
       1   2   3
    +---+---+
    : | |
    : | |
    6 +---+---+ 4
    / 5 :
    / :
    / :
    7 + - - - -
    Check some of the routes: 
    1 – 2: 1 –> 2 and 1 –> 6 –> 5 –> 2 
    1 – 4: 1 –> 2 –> 3 –> 4 and 1 –> 6 –> 5 –> 4 
    3 – 7: 3 –> 4 –> 7 and 3 –> 2 –> 5 –> 7 
    Every pair of fields is, in fact, connected by two routes. 

    It's possible that adding some other path will also solve the problem (like one from 6 to 7). Adding two paths, however, is the minimum.
     
     
    #include<iostream>
    #include<stdio.h>
    #include<string.h>
    #include<stdlib.h>
    #include<math.h>
    #include<algorithm>
    #include<stack>
    #include<queue>
    #include<vector>
    
    using namespace std;
    #define N 20000
    
    int low[N],dfn[N],n,fa[N],Stack[N],belong[N],Is[N],aa[N];
    int Time,top,ans;
    vector<vector <int> >G;
    
    void Inn()
    {
        G.clear();
        G.resize(n+1);
        memset(low,0,sizeof(low));
        memset(dfn,0,sizeof(dfn));
        memset(fa,0,sizeof(fa));
        memset(belong,0,sizeof(belong));
        memset(Stack,0,sizeof(Stack));
        memset(Is,0,sizeof(Is));
        memset(aa,0,sizeof(aa));
        Time=top=ans=0;
    }
    
    void Tarjin(int u,int f)
    {
        dfn[u]=low[u]=++Time;
        Stack[top++]=u;
        Is[u]=1;
        fa[u]=f;
        int len=G[u].size(),v;
        for(int i=0; i<len; i++)
        {
            v=G[u][i];
            if(!dfn[v])
            {
                Tarjin(v,u);
                low[u]=min(low[u],low[v]);
            }
            else if(f!=v)
                low[u]=min(low[u],dfn[v]);
        }
        if(dfn[u]==low[u])
        {
            ans++;
            do
            {
                v=Stack[--top];
                belong[v]=ans;
                Is[v]=0;
            }while(v!=u);
        }
    }
    
    
    int main()
    {
        int m,a,b,i,sum;
        while(scanf("%d %d",&n,&m)!=EOF)
        {
            sum=0;
            Inn();
            for(i=1;i<=m;i++)
            {
                scanf("%d %d",&a,&b);
                G[a].push_back(b);
                G[b].push_back(a);
            }
            for(i=1;i<=n;i++)
            {
                if(!dfn[i])
                Tarjin(i,0);
            }
            for(i=1;i<=n;i++)
            {
                int v=fa[i];
                if(belong[i]!=belong[v]&&v!=0)
                {
                    aa[belong[i]]++;
                    aa[belong[v]]++;
                }
            }
            for(i=1;i<=ans;i++)
            {
                if(aa[i]==1)
                    sum++;
            }
            printf("%d
    ",(sum+1)/2);
        }
        return 0;
    }
  • 相关阅读:
    谈谈软件的开发及成长历程
    Winform开发框架之简易工作流设计
    如何快速开发树形列表和分页查询整合的WInform程序界面
    邮件代收代发功能模块的操作界面设计和阶段性总结
    基于Lumisoft.NET组件的SMTP账号登陆检测
    Winform开发的界面处理优化
    基于DevExpress开发的GridView如何实现一列显示不同的控件类型
    Winform里面的缓存使用
    分享一个Winform里面的HTML编辑控件Zeta HTML Edit Control,汉化附源码
    算法 dfs —— 将二叉树 先序遍历 转为 链表
  • 原文地址:https://www.cnblogs.com/linliu/p/4918253.html
Copyright © 2011-2022 走看看