zoukankan      html  css  js  c++  java
  • 并发编程---进阶1


    如果你的pycharm老是过期,你可以直接下载最新版本的pycharm,然后加入一个网站获取激活码即可

    http://idea.medeming.com/jets/

    进程对象及其他方法

    """
    一台计算机上面运行着很多进程,那么计算机是如何区分并管理这些进程服务端的呢?
    计算机会给每一个运行的进程分配一个PID号 
    如何查看
    	windows电脑 
    		进入cmd输入tasklist即可查看
    		tasklist |findstr PID查看具体的进程
    	mac电脑 
    		进入终端之后输入ps aux
    		ps aux|grep PID查看具体的进程 
    """
    from multiprocessing import Process, current_process
    current_process().pid  # 查看当前进程的进程号
    
    import os
    os.getpid()  # 查看当前进程进程号
    os.getppid()  # 查看当前进程的父进程进程号
    
    
    p.terminate()  # 杀死当前进程
    # 是告诉操作系统帮你去杀死当前进程 但是需要一定的时间 而代码的运行速度极快
    time.sleep(0.1)
    print(p.is_alive())  # 判断当前进程是否存活
    

    僵尸进程与孤儿进程(了解)

    # 僵尸进程
    """
    死了但是没有死透
    当你开设了子进程之后 该进程死后不会立刻释放占用的进程号
    因为我要让父进程能够查看到它开设的子进程的一些基本信息 占用的pid号 运行时间。。。
    所有的进程都会步入僵尸进程
    	父进程不死并且在无限制的创建子进程并且子进程也不结束
    	回收子进程占用的pid号
    		父进程等待子进程运行结束
    		父进程调用join方法
    """
    
    ### 孤儿进程
    """
    子进程存活,父进程意外死亡
    操作系统会开设一个“儿童福利院”专门管理孤儿进程回收相关资源
    """
    

    守护进程

    from multiprocessing import Process
    import time
    
    
    def task(name):
        print('%s总管正在活着'% name)
        time.sleep(3)
        print('%s总管正在死亡' % name)
    
    
    if __name__ == '__main__':
        p = Process(target=task,args=('egon',))
        # p = Process(target=task,kwargs={'name':'egon'})
        p.daemon = True  # 将进程p设置成守护进程  这一句一定要放在start方法上面才有效否则会直接报错
        p.start()
        print('皇帝jason寿终正寝')
    

    互斥锁

    多个进程操作同一份数据的时候,会出现数据错乱的问题

    针对上述问题,解决方式就是加锁处理:将并发变成串行,牺牲效率但是保证了数据的安全

    from multiprocessing import Process, Lock
    import json
    import time
    import random
    
    
    ### 查票
    def search(i):
        # 文件操作读取票数
        with open('data','r',encoding='utf8') as f:
            dic = json.load(f)
        print('用户%s查询余票:%s'%(i, dic.get('ticket_num')))
        # 字典取值不要用[]的形式 推荐使用get  你写的代码打死都不能报错!!!
    
    
    ### 买票  1.先查 2.再买
    def buy(i):
        # 先查票
        with open('data','r',encoding='utf8') as f:
            dic = json.load(f)
        # 模拟网络延迟
        time.sleep(random.randint(1,3))
        # 判断当前是否有票
        if dic.get('ticket_num') > 0:
            # 修改数据库 买票
            dic['ticket_num'] -= 1
            # 写入数据库
            with open('data','w',encoding='utf8') as f:
                json.dump(dic,f)
            print('用户%s买票成功'%i)
        else:
            print('用户%s买票失败'%i)
    
    
    ### 整合上面两个函数
    def run(i, mutex):
        search(i)
        # 给买票环节加锁处理
        # 抢锁
        mutex.acquire()
    
        buy(i)
        # 释放锁
        mutex.release()
    
    
    if __name__ == '__main__':
        # 在主进程中生成一把锁 让所有的子进程抢 谁先抢到谁先买票
        mutex = Lock()
        for i in range(1,11):
            p = Process(target=run, args=(i, mutex))
            p.start()
    """
    扩展 行锁 表锁
    
    注意:
    	1.锁不要轻易的使用,容易造成死锁现象(我们写代码一般不会用到,都是内部封装好的)
    	2.锁只在处理数据的部分加来保证数据安全(只在争抢数据的环节加锁处理即可) 
    """
    

    进程间通信

    队列Queue模块

    """
    管道:subprocess 
    	stdin stdout stderr
    队列:管道+锁
    
    队列:先进先出
    堆栈:先进后出
    """
    from multiprocessing import Queue
    
    # 创建一个队列
    q = Queue(5)  # 括号内可以传数字 标示生成的队列最大可以同时存放的数据量
    
    # 往队列中存数据
    q.put(111)
    q.put(222)
    q.put(333)
    # print(q.full())  # 判断当前队列是否满了
    # print(q.empty())  # 判断当前队列是否空了
    q.put(444)
    q.put(555)
    # print(q.full())  # 判断当前队列是否满了
    
    # q.put(666)  # 当队列数据放满了之后 如果还有数据要放程序会阻塞 直到有位置让出来 不会报错
    
    """
    存取数据 存是为了更好的取
    千方百计的存、简单快捷的取
    
    同在一个屋檐下
    差距为何那么大
    """
    
    # 去队列中取数据
    v1 = q.get()
    v2 = q.get()
    v3 = q.get()
    v4 = q.get()
    v5 = q.get()
    # print(q.empty())
    # V6 = q.get_nowait()  # 没有数据直接报错queue.Empty
    # v6 = q.get(timeout=3)  # 没有数据之后原地等待三秒之后再报错  queue.Empty
    try:
        v6 = q.get(timeout=3)
        print(v6)
    except Exception as e:
        print('一滴都没有了!')
    
    # # v6 = q.get()  # 队列中如果已经没有数据的话 get方法会原地阻塞
    # print(v1, v2, v3, v4, v5, v6)
    
    """
    q.full()
    q.empty()
    q.get_nowait()
    在多进程的情况下是不精确
    """
    

    IPC机制

    from multiprocessing import Queue, Process
    
    """
    研究思路
        1.主进程跟子进程借助于队列通信
        2.子进程跟子进程借助于队列通信
    """
    def producer(q):
        q.put('我是23号技师 很高兴为您服务')
    
    
    def consumer(q):
        print(q.get())
    
    
    if __name__ == '__main__':
        q = Queue()
        p = Process(target=producer,args=(q,))
        p1 = Process(target=consumer,args=(q,))
        p.start()
        p1.start()
    

    生产者消费者模型

    """
    生产者:生产/制造东西的
    消费者:消费/处理东西的
    该模型除了上述两个之外还需要一个媒介
    	生活中的例子做包子的将包子做好后放在蒸笼(媒介)里面,买包子的取蒸笼里面拿
    	厨师做菜做完之后用盘子装着给你消费者端过去
    	生产者和消费者之间不是直接做交互的,而是借助于媒介做交互
    	
    生产者(做包子的) + 消息队列(蒸笼) + 消费者(吃包子的)
    """
    

    线程理论

    致命三问

    • 什么是线程

      """
      进程:资源单位
      线程:执行单位
      
      将操作系统比喻成一个大的工厂
      那么进程就相当于工厂里面的车间
      而线程就是车间里面的流水线
      
      每一个进程肯定自带一个线程
      
      再次总结:
      	进程:资源单位(起一个进程仅仅只是在内存空间中开辟一块独立的空间)
      	线程:执行单位(真正被cpu执行的其实是进程里面的线程,线程指的就是代码的执行过程,执行代码中所需要使用到的资源都找所在的进程索要)
      	
      进程和线程都是虚拟单位,只是为了我们更加方便的描述问题
      """
      
    • 为何要有线程

      """
      开设进程
      	1.申请内存空间	耗资源
      	2.“拷贝代码”   耗资源
      开线程
      	一个进程内可以开设多个线程,在用一个进程内开设多个线程无需再次申请内存空间操作
      
      总结:
      	开设线程的开销要远远的小于进程的开销
      	同一个进程下的多个线程数据是共享的!!!
      """
      我们要开发一款文本编辑器
      	获取用户输入的功能
        实时展示到屏幕的功能
        自动保存到硬盘的功能
      针对上面这三个功能,开设进程还是线程合适???
      	开三个线程处理上面的三个功能更加的合理
      
    • 如何使用

    今日作业

    • 整理今日内容到博客

      描述知识点一定要用自己的话术概括,不要死记硬背!!!

      把知识点理解了,再去用自己语言组织说出来即可

    • 手动书写生产者消费者代码

    • 思考:如何实现TCP服务端并发的效果

  • 相关阅读:
    mobile web retina 下 1px 边框解决方案
    git基础操作
    JavaScript词法分析
    JS给元素循环添加事件的问题
    useMemo优化React Hooks程序性能,解决子组件重复执行问题
    使用 useReducer 和 useCallback 解决 useEffect 依赖诚实与方法内置&外置问题
    createContext 和 useContext 结合使用实现方法共享(React Hook跨组件透传上下文与性能优化)
    浅谈开发变量作用域---小坑
    优雅的在React项目中使用Redux
    浅谈react无状态组件(哑组件)和有状态组件(智能组件)的区别
  • 原文地址:https://www.cnblogs.com/linqiaobao/p/13053823.html
Copyright © 2011-2022 走看看