zoukankan      html  css  js  c++  java
  • LeetCode51. N皇后

    题意是给定一个N × N大小的棋盘,求不同的N皇后方案的个数。N皇后的方案指,N个皇后放在棋盘上,互相不能攻击到。

    国际象棋里,皇后可以横竖斜走若干步,所以一个方案是合法的,必须满足任意一个皇后所在的行、列、对角线、斜对角线都没有其他皇后。
    我们要求的就是这样的方案的个数。

    由于每行只能放一个皇后,所以我们可以按照行来搜索方案(当然按列或者对角线/斜对角线也可,不过按行来搜索代码比较好写),
    要满足互相不攻击的条件,我们在搜索每一行的时候,都需要枚举这一行可以放皇后的位置,可以放皇后的条件就是:
    当前位置的列、对角线、斜对角线上都没有其他皇后,只要满足这个条件,就可以在当前位置放一个皇后,然后继续搜索下一行。

    所以显然这就是一个DFS + 回溯,DFS结束的条件就是搜索到了最后一行(的下一个位置),也就是找到一个每一行都可以放下一个皇后且不冲突的方案。
    这时就在结果数组里记录下方案数。当DFS(0)执行结束(表示从第0行开始递归搜索所有解方案)时,我们就找到了所有的方案。

    这里的关键就是如何判断当前要判断的位置是否冲突,如何判断这个位置所在的列、对角线、斜对角线上是否有其他皇后呢?

    如上图所示,红色线为列,绿色线为斜对角线,紫色线为对角线。

    对于列,其实很好判断,只要开一个大小为n的bool数组,记录每一列上是否已有皇后即可。

    对于斜对角线(这里认为对角线是棋盘从左上到右下的斜线)的判断,我们可以寻找规律,我们把棋盘从上向下作为横坐标x,从左到右作为纵坐标y。
    首先可以发现一共有2 * n - 1条对角线,对于每一条斜对角线,都有一个y = x + k的形式,比如最中间的斜对角线(即棋盘左上角到右下角的斜对角线
    就满足方程y=x),移项得到k = y - x(即k等于列号减去行号),所以k是斜对角线在x轴的截距,
    所以我们可以根据截距k来判断当前位置属于哪一条斜对角线,从k = y - x这个公式可以看出,
    k有可能为负数(截距k在x轴负半轴),我们可以给所有截距都加上一个n,将截距k变为正数。

    对于对角线(这里认为斜对角线是棋盘从右上到左下的斜线)的判断,可以发现规律,对角线都满足方程x + y = k(这里的k不是斜对角线的k了),
    所以我们可以直接根据x + y的值(即行和列的和)来判断当前位置属于哪个对角线。

    所以按行搜索的时候,对于每一行的所有位置我们都枚举一遍,看看每个位置上所在的列、对角线、斜对角线上是否都没有其他皇后了,
    如果没有,说明当前位置可以放皇后,就先放一个皇后,然后递归再搜索下一行,直到搜索到最后一行(的下一个位置)或者枚举完所有的位置,
    表示找到可行的方案或者找不到。

    代码如下:

    class Solution {
    vector<vector<string>> res;            //结果数组,保存所有可行方案的棋盘
    vector<string> oneSolution;            //记录一个可行方案
    int n;                                 //n是棋盘大小,这里要记录到一个全局变量里,方便对于下面三个数组以及上面的oneSolution数组大小的初始化
    vector<bool> cols, diagram, anti_diagram;      //分别判断列、对角线、斜对角线上是否有皇后
    public:
        vector<vector<string>> solveNQueens(int _n) {
            n = _n;
            cols = vector<bool>(n);                 //把n记录到全局变量里,就是为了这里给四个数组赋予一定大小
            diagram = anti_diagram = vector<bool>(2 * n);            //对角线和斜对角线分别由2 * n - 1条
            oneSolution = vector<string>(n, string(n, '.'));         //最开始令棋盘全部为'.'
            DFS(0);                                    //从第0行开始搜索
            return res;
        }
        void DFS(int curRow) {                        //传入参数curRow表示当前正在搜索的行
            if(curRow == n) {                         //如果搜索到最后一行的下一个位置,表示找到了一个可行解
                res.push_back(oneSolution);           //记录当前棋盘
                return ;
            }
            for(int i = 0; i < n; ++i) {              //搜索当前行的所有列,判断是否可以放置皇后(即不产生冲突)
                if(cols[i] == false && diagram[curRow - i + n] == false && anti_diagram[curRow + i] == false) {   //如果当前位置所在列、对角线、斜对角线上都没有皇后,则可以在当前位置放一个皇后
                    cols[i] = diagram[curRow - i + n] = anti_diagram[curRow + i] = true;     //搜索下一行之前,需要先记录当前列、对角线、斜对角线上已经有皇后
                    oneSolution[curRow][i] = 'Q';       //“放皇后”,在棋盘上将'.'修改为'Q'
                    DFS(curRow + 1);                    //继续搜索下一行
                    oneSolution[curRow][i] = '.';       //DFS回溯要恢复现场,且一定和DFS之前的操作是对称的,之前将当前位置改为'Q',现在要改回去
                    cols[i] = diagram[curRow - i + n] = anti_diagram[curRow + i] = false;      //还要修改当前列、对角线、斜对角线的状态为没有皇后
                }
            }
        }
    };
    
  • 相关阅读:
    JQuery帮助文档整理
    将table信息导出到excel
    jquery 选择器
    程序不小心出现死锁的解决方法
    兼容IE firefox 的全英文自动换行
    第三周2
    Jquery操作Select集锦
    Silverlight初学之:如果调用Silverlight项目中不同的控件
    【转载】很好的解决了asp.net页面ViewState过大的问题
    js得到url的各个部分【转】
  • 原文地址:https://www.cnblogs.com/linrj/p/13252463.html
Copyright © 2011-2022 走看看