zoukankan      html  css  js  c++  java
  • pat 甲级 1045 ( Favorite Color Stripe ) (动态规划 )

    1045 Favorite Color Stripe (30 分)

    Eva is trying to make her own color stripe out of a given one. She would like to keep only her favorite colors in her favorite order by cutting off those unwanted pieces and sewing the remaining parts together to form her favorite color stripe.

    It is said that a normal human eye can distinguish about less than 200 different colors, so Eva's favorite colors are limited. However the original stripe could be very long, and Eva would like to have the remaining favorite stripe with the maximum length. So she needs your help to find her the best result.

    Note that the solution might not be unique, but you only have to tell her the maximum length. For example, given a stripe of colors {2 2 4 1 5 5 6 3 1 1 5 6}. If Eva's favorite colors are given in her favorite order as {2 3 1 5 6}, then she has 4 possible best solutions {2 2 1 1 1 5 6}, {2 2 1 5 5 5 6}, {2 2 1 5 5 6 6}, and {2 2 3 1 1 5 6}.

    Input Specification:

    Each input file contains one test case. For each case, the first line contains a positive integer N (≤200) which is the total number of colors involved (and hence the colors are numbered from 1 to N). Then the next line starts with a positive integer M (≤200) followed by M Eva's favorite color numbers given in her favorite order. Finally the third line starts with a positive integer L (≤10​4​​) which is the length of the given stripe, followed by L colors on the stripe. All the numbers in a line a separated by a space.

    Output Specification:

    For each test case, simply print in a line the maximum length of Eva's favorite stripe.

    Sample Input:

    6
    5 2 3 1 5 6
    12 2 2 4 1 5 5 6 3 1 1 5 6
    

    Sample Output:

    7

    思路:设dp[i][j]为考虑从第0到i种颜色,考虑到长度从0到第j时的最长结果,那么状态转移方程是显而易见的。

    代码如下:

    #include<bits/stdc++.h>
    using namespace std;
    int n,m,l;
    int color[205];
    int a[10004];
    int dp[205][10005];
    int main()
    {
        cin>>n;
        cin>>m;
        for(int i=0;i<m;i++)cin>>color[i];
        cin>>l;
        for(int i=0;i<l;i++)cin>>a[i];
        dp[0][0]=(color[0]==a[0])?1:0;
        for(int j=1;j<l;j++)dp[0][j]=(color[0]==a[j])?dp[0][j-1]+1:dp[0][j-1];
        for(int i=1;i<m;i++)dp[i][0]=(color[i]==a[0])?1:dp[i-1][0];
        for(int i=1;i<m;i++)
        {
            for(int j=1;j<l;j++)
            {
                if(color[i]==a[j])dp[i][j]=max(dp[i-1][j],dp[i][j-1]+1);
                else dp[i][j]=max(dp[i-1][j],dp[i][j-1]);
            }
        }
        cout<<dp[m-1][l-1]<<endl;
        return 0;
    }
    
  • 相关阅读:
    Qt中的角度转弧度
    Qt5鼠标事件及实例
    POJ 2239 Selecting Courses【最大匹配】
    POJ 1325 Machine Schedule【最小点覆盖】
    POJ 1469 COURSES【二分图最大匹配】
    POJ 1274 The Perfect Stall【二分图最大匹配】
    poj2226Muddy Fields【最小点覆盖(建图的思路比较好)】
    hdu4160Dolls【最小路径覆盖】
    hdu2444The Accomodation of Students【判断二分图+最大匹配】
    HLG1407Leyni的游戏【最小点权覆盖集】
  • 原文地址:https://www.cnblogs.com/linruier/p/10085405.html
Copyright © 2011-2022 走看看