zoukankan      html  css  js  c++  java
  • pat 甲级 1045 ( Favorite Color Stripe ) (动态规划 )

    1045 Favorite Color Stripe (30 分)

    Eva is trying to make her own color stripe out of a given one. She would like to keep only her favorite colors in her favorite order by cutting off those unwanted pieces and sewing the remaining parts together to form her favorite color stripe.

    It is said that a normal human eye can distinguish about less than 200 different colors, so Eva's favorite colors are limited. However the original stripe could be very long, and Eva would like to have the remaining favorite stripe with the maximum length. So she needs your help to find her the best result.

    Note that the solution might not be unique, but you only have to tell her the maximum length. For example, given a stripe of colors {2 2 4 1 5 5 6 3 1 1 5 6}. If Eva's favorite colors are given in her favorite order as {2 3 1 5 6}, then she has 4 possible best solutions {2 2 1 1 1 5 6}, {2 2 1 5 5 5 6}, {2 2 1 5 5 6 6}, and {2 2 3 1 1 5 6}.

    Input Specification:

    Each input file contains one test case. For each case, the first line contains a positive integer N (≤200) which is the total number of colors involved (and hence the colors are numbered from 1 to N). Then the next line starts with a positive integer M (≤200) followed by M Eva's favorite color numbers given in her favorite order. Finally the third line starts with a positive integer L (≤10​4​​) which is the length of the given stripe, followed by L colors on the stripe. All the numbers in a line a separated by a space.

    Output Specification:

    For each test case, simply print in a line the maximum length of Eva's favorite stripe.

    Sample Input:

    6
    5 2 3 1 5 6
    12 2 2 4 1 5 5 6 3 1 1 5 6
    

    Sample Output:

    7

    思路:设dp[i][j]为考虑从第0到i种颜色,考虑到长度从0到第j时的最长结果,那么状态转移方程是显而易见的。

    代码如下:

    #include<bits/stdc++.h>
    using namespace std;
    int n,m,l;
    int color[205];
    int a[10004];
    int dp[205][10005];
    int main()
    {
        cin>>n;
        cin>>m;
        for(int i=0;i<m;i++)cin>>color[i];
        cin>>l;
        for(int i=0;i<l;i++)cin>>a[i];
        dp[0][0]=(color[0]==a[0])?1:0;
        for(int j=1;j<l;j++)dp[0][j]=(color[0]==a[j])?dp[0][j-1]+1:dp[0][j-1];
        for(int i=1;i<m;i++)dp[i][0]=(color[i]==a[0])?1:dp[i-1][0];
        for(int i=1;i<m;i++)
        {
            for(int j=1;j<l;j++)
            {
                if(color[i]==a[j])dp[i][j]=max(dp[i-1][j],dp[i][j-1]+1);
                else dp[i][j]=max(dp[i-1][j],dp[i][j-1]);
            }
        }
        cout<<dp[m-1][l-1]<<endl;
        return 0;
    }
    
  • 相关阅读:
    性能优化随笔
    Linux文件类型及如何查看,修改文件读写权限
    ngx_pagespeed
    用U盘安装Linux系统的简单方法
    Maven 3 入门 安装与配置
    CentOS 6.2 安装教程
    各种代码文件中的注释格式
    Linux下的WebLogic安装部署
    Win8常用快捷键
    Jenkins入门总结
  • 原文地址:https://www.cnblogs.com/linruier/p/10085405.html
Copyright © 2011-2022 走看看