zoukankan      html  css  js  c++  java
  • hdu 1695 欧拉函数+容斥原理

    GCD

    Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 15488    Accepted Submission(s): 5948

    Problem Description

    Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD(x, y) = k. GCD(x, y) means the greatest common divisor of x and y. Since the number of choices may be very large, you're only required to output the total number of different number pairs.
    Please notice that, (x=5, y=7) and (x=7, y=5) are considered to be the same.
    Yoiu can assume that a = c = 1 in all test cases.

    Input

    The input consists of several test cases. The first line of the input is the number of the cases. There are no more than 3,000 cases.
    Each case contains five integers: a, b, c, d, k, 0 < a <= b <= 100,000, 0 < c <= d <= 100,000, 0 <= k <= 100,000, as described above.

    Output

    For each test case, print the number of choices. Use the format in the example.

    Sample Input

    2 1 3 1 5 1 1 11014 1 14409 9

    Sample Output

    Case 1: 9 Case 2: 736427

    Hint

    For the first sample input, all the 9 pairs of numbers are (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 5), (3, 4), (3, 5).

    #include<bits/stdc++.h>
    using namespace std;
    typedef long long ll;
    int T;
    int a,b,c,d;
    int k;
    vector<int> v[100050];
    void factor(int n)
    {
        int temp,i;int now;
        temp=(int)((double)sqrt(n)+1);
        now=n;
        for(i=2;i<=temp;++i)
        if(now%i==0){
                v[n].push_back(i);
            while(now%i==0)
            {
                now/=i;
            }
        }
        if(now!=1){
            v[n].push_back(now);
        }
    }
    ll euler[100005];
    ll sumeuler[100005];
    void euler_phi2()
    {
        for(int i=0;i<100005;i++)euler[i]=i;
        for(int i=2;i<100005;i++)
        {
            if(euler[i]==i){
                for(int j=i;j<100005;j+=i)euler[j]=euler[j]/i*(i-1);
            }
        }
        sumeuler[1]=1;
        for(int i=2;i<100005;i++)
            sumeuler[i] = sumeuler[i-1]+euler[i];
    }
    void init()
    {
        euler_phi2();
        for(int i=1;i<=100000;i++)factor(i);
    }
    int id=1;
    int main()
    {
        #ifndef ONLINE_JUDGE
            freopen("in.txt","r",stdin);
        #endif // ONLINE_JUDGE
        init();
        scanf("%d",&T);
        int x,y;
        while(T--)
        {
            scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
            if(k==0||k>b||k>d){cout<<"Case "<<id++<<": "<<0<<endl;continue;}
            x=b/k;//区间一右端点
            y=d/k;//区间二右端点
            if(x>y) swap(x,y);
            ll ans=sumeuler[x];
            ll S=0;
            for(int i=x+1;i<=y;i++)
            {
                int num=v[i].size();
                for(int j=1;j<(1<<num);j++)
                {
                    ll fac=1;int cnt=0;
                    for(int k=0;k<num;k++)
                    {
                        if(j&(1<<k)){cnt++;fac*=v[i][k]; }
                    }
                    if(cnt&1)S+=x/fac;else S-=x/fac;
                }
            }
            S=1ll*x*(y-x)-S;
            ans+=S;
            cout<<"Case "<<id++<<": "<<ans<<endl;
        }
    }
    
    
    
  • 相关阅读:
    usaco PROB Checker Challenge 搜索
    usaco Superprime Rib 搜索
    hdu_1056_HangOver_201311071354
    hdu_1049_Climbing Worm_201311061331
    hdu_1048_The Hardest Problem Ever_201311052052
    hdu_1041_Computer Transformation_201311051648
    hdu_1039_Easier Done Than Said_201311051511
    hdu_1038_Biker's Trip Odometer_201311021643
    hdu_1037_Keep on Truckin'_201311021600
    hdu_1036_Average is not Fast Enough_201311021335
  • 原文地址:https://www.cnblogs.com/linruier/p/9485151.html
Copyright © 2011-2022 走看看