zoukankan      html  css  js  c++  java
  • poj 2559 Largest Rectangle(单调栈)

    Largest Rectangle in a Histogram

    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 26549   Accepted: 8581

    Description

    A histogram is a polygon composed of a sequence of rectangles aligned at a common base line. The rectangles have equal widths but may have different heights. For example, the figure on the left shows the histogram that consists of rectangles with the heights 2, 1, 4, 5, 1, 3, 3, measured in units where 1 is the width of the rectangles: 


    Usually, histograms are used to represent discrete distributions, e.g., the frequencies of characters in texts. Note that the order of the rectangles, i.e., their heights, is important. Calculate the area of the largest rectangle in a histogram that is aligned at the common base line, too. The figure on the right shows the largest aligned rectangle for the depicted histogram.

    Input

    The input contains several test cases. Each test case describes a histogram and starts with an integer n, denoting the number of rectangles it is composed of. You may assume that 1<=n<=100000. Then follow n integers h1,...,hn, where 0<=hi<=1000000000. These numbers denote the heights of the rectangles of the histogram in left-to-right order. The width of each rectangle is 1. A zero follows the input for the last test case.

    Output

    For each test case output on a single line the area of the largest rectangle in the specified histogram. Remember that this rectangle must be aligned at the common base line.

    Sample Input

    7 2 1 4 5 1 3 3
    4 1000 1000 1000 1000
    0
    

    Sample Output

    8
    4000

    单调栈入门题...

    
    #include<bits/stdc++.h>
    #include<stdio.h>
    #include<iostream>
    #include<cmath>
    #include<math.h>
    #include<queue>
    #include<set>
    #include<map>
    #include<iomanip>
    #include<algorithm>
    #include<stack>
    #define inf 0x3f3f3f3f
    using namespace std;
    typedef long long ll;
    int n;
    int a[100005];
    int st[100005];
    int L[100005];
    int R[100005];
    int main()
    {
    #ifndef ONLINE_JUDGE
        freopen("in.txt","r",stdin);
    #endif // ONLIN
        while(1)
        {
            scanf("%d",&n);
            if(n==0)break;
            for(int i=1;i<=n;i++)scanf("%d",&a[i]);
            stack<int>st;
            for(int i=1;i<=n;i++)
            {
                while(!st.empty()&&a[st.top()]>=a[i])st.pop();
                if(st.empty()){L[i]=1;st.push(i);continue;}
                L[i]=st.top()+1;
                st.push(i);
            }
            while(!st.empty())st.pop();
            for(int i=n;i>=1;i--)
            {
                while(!st.empty()&&a[st.top()]>=a[i])st.pop();
                if(st.empty()){R[i]=n;st.push(i);continue;}
                R[i]=st.top()-1;
                st.push(i);
            }
            
            ll ans=0;
            for(int i=1;i<=n;i++)
            {
                ans=max(ans,1ll*a[i]*(R[i]-L[i]+1));
            }
            printf("%lld
    ",ans);
        }
        return 0;
    }
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
  • 相关阅读:
    Spring 声明式事务管理(11)
    Spring JdbcTemplate详解(9)
    Spring 基于xml配置方式的AOP(8)
    Spring AspectJ 切入点语法详解(7)
    Spring 基于Aspectj切面表达式(6)
    spring AOP 编程--AspectJ注解方式 (4)
    Spring 切面优先级(5)
    Spring 泛型依赖注入(3)
    python反射/自省 (目前是转载)
    flask_requirements
  • 原文地址:https://www.cnblogs.com/linruier/p/9581001.html
Copyright © 2011-2022 走看看