zoukankan      html  css  js  c++  java
  • hdu 5187 zhx's contest (快速幂+快速乘)

    zhx's contest

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
    Total Submission(s): 3835    Accepted Submission(s): 1255

    Problem Description

    As one of the most powerful brushes, zhx is required to give his juniors n problems.
    zhx thinks the ith problem's difficulty is i. He wants to arrange these problems in a beautiful way.
    zhx defines a sequence {ai} beautiful if there is an i that matches two rules below:
    1: a1..ai are monotone decreasing or monotone increasing.
    2: ai..an are monotone decreasing or monotone increasing.
    He wants you to tell him that how many permutations of problems are there if the sequence of the problems' difficulty is beautiful.
    zhx knows that the answer may be very huge, and you only need to tell him the answer module p.

    Input

    Multiply test cases(less than 1000). Seek EOF as the end of the file.
    For each case, there are two integers n and p separated by a space in a line. (1≤n,p≤1018)

    Output

    For each test case, output a single line indicating the answer.

    Sample Input

    2 233 3 5

    Sample Output

    2 1

    Hint

    In the first case, both sequence {1, 2} and {2, 1} are legal. In the second case, sequence {1, 2, 3}, {1, 3, 2}, {2, 1, 3}, {2, 3, 1}, {3, 1, 2}, {3, 2, 1} are legal, so the answer is 6 mod 5 = 1

    
    # include <iostream>
    # include <cstring>
    # include <cstdio>
    using namespace std;
    typedef long long LL;
    LL p,mod;LL n;
    inline LL quick_mul(LL x,LL y,LL MOD){
        x=x%MOD,y=y%MOD;
        return ((x*y-(LL)(((long double)x*y+0.5)/MOD)*MOD)%MOD+MOD)%MOD;
    }
    LL qmod(LL a, LL b)
    {
        LL ans = 1, pow = a%mod;
        while(b)
        {
            if(b&1) ans = (quick_mul(ans,pow,mod))%mod;
            pow = (quick_mul(pow,pow,mod))%mod;
            b >>= 1;
        }
        return ans;
    }
    int main()
    {
        while(~scanf("%lld%lld",&n,&p))
        {
            mod=p;
            LL ans=qmod(2,n);
            ans=(ans-2+mod)%mod;
            printf("%lld
    ",ans);
        }
        return 0;
    }
    
    
    
    
    
    
    
    
    
  • 相关阅读:
    我的开发环境配置经验
    C# WINFORM 打包数据库
    C#格式化数值结果表(格式化字符串)
    Excel如何固定表头,任意一行
    下载fiddler证书并设置信任
    fiddler展示serverIP方法
    fiddler抓包参数乱码的解决方法
    fiddler模拟发送get/post请求(也可做简单接口测试)
    Jenkins常用插件
    关于gitignore文件的创建与使用
  • 原文地址:https://www.cnblogs.com/linruier/p/9846320.html
Copyright © 2011-2022 走看看