zoukankan      html  css  js  c++  java
  • hdu 5187 zhx's contest (快速幂+快速乘)

    zhx's contest

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
    Total Submission(s): 3835    Accepted Submission(s): 1255

    Problem Description

    As one of the most powerful brushes, zhx is required to give his juniors n problems.
    zhx thinks the ith problem's difficulty is i. He wants to arrange these problems in a beautiful way.
    zhx defines a sequence {ai} beautiful if there is an i that matches two rules below:
    1: a1..ai are monotone decreasing or monotone increasing.
    2: ai..an are monotone decreasing or monotone increasing.
    He wants you to tell him that how many permutations of problems are there if the sequence of the problems' difficulty is beautiful.
    zhx knows that the answer may be very huge, and you only need to tell him the answer module p.

    Input

    Multiply test cases(less than 1000). Seek EOF as the end of the file.
    For each case, there are two integers n and p separated by a space in a line. (1≤n,p≤1018)

    Output

    For each test case, output a single line indicating the answer.

    Sample Input

    2 233 3 5

    Sample Output

    2 1

    Hint

    In the first case, both sequence {1, 2} and {2, 1} are legal. In the second case, sequence {1, 2, 3}, {1, 3, 2}, {2, 1, 3}, {2, 3, 1}, {3, 1, 2}, {3, 2, 1} are legal, so the answer is 6 mod 5 = 1

    
    # include <iostream>
    # include <cstring>
    # include <cstdio>
    using namespace std;
    typedef long long LL;
    LL p,mod;LL n;
    inline LL quick_mul(LL x,LL y,LL MOD){
        x=x%MOD,y=y%MOD;
        return ((x*y-(LL)(((long double)x*y+0.5)/MOD)*MOD)%MOD+MOD)%MOD;
    }
    LL qmod(LL a, LL b)
    {
        LL ans = 1, pow = a%mod;
        while(b)
        {
            if(b&1) ans = (quick_mul(ans,pow,mod))%mod;
            pow = (quick_mul(pow,pow,mod))%mod;
            b >>= 1;
        }
        return ans;
    }
    int main()
    {
        while(~scanf("%lld%lld",&n,&p))
        {
            mod=p;
            LL ans=qmod(2,n);
            ans=(ans-2+mod)%mod;
            printf("%lld
    ",ans);
        }
        return 0;
    }
    
    
    
    
    
    
    
    
    
  • 相关阅读:
    [haoi2009]逆序对数列
    [haoi2008]木棍分割
    【LibreOJ 6277】数列分块入门 1 (分块)
    【模板】 最大流模板(ISAP)
    【模板】最大流模板(dinic)
    [模板] zkw线段树
    [luogu P1962] 斐波那契数列(带快速幂矩阵乘法模板)
    [SCOI2010] 股票交易 (单调队列优化dp)
    [luogu P2285] [HNOI2004]打鼹鼠
    [poj 2152] fire (树形dp)
  • 原文地址:https://www.cnblogs.com/linruier/p/9846320.html
Copyright © 2011-2022 走看看