zoukankan      html  css  js  c++  java
  • hdu 5187 zhx's contest (快速幂+快速乘)

    zhx's contest

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
    Total Submission(s): 3835    Accepted Submission(s): 1255

    Problem Description

    As one of the most powerful brushes, zhx is required to give his juniors n problems.
    zhx thinks the ith problem's difficulty is i. He wants to arrange these problems in a beautiful way.
    zhx defines a sequence {ai} beautiful if there is an i that matches two rules below:
    1: a1..ai are monotone decreasing or monotone increasing.
    2: ai..an are monotone decreasing or monotone increasing.
    He wants you to tell him that how many permutations of problems are there if the sequence of the problems' difficulty is beautiful.
    zhx knows that the answer may be very huge, and you only need to tell him the answer module p.

    Input

    Multiply test cases(less than 1000). Seek EOF as the end of the file.
    For each case, there are two integers n and p separated by a space in a line. (1≤n,p≤1018)

    Output

    For each test case, output a single line indicating the answer.

    Sample Input

    2 233 3 5

    Sample Output

    2 1

    Hint

    In the first case, both sequence {1, 2} and {2, 1} are legal. In the second case, sequence {1, 2, 3}, {1, 3, 2}, {2, 1, 3}, {2, 3, 1}, {3, 1, 2}, {3, 2, 1} are legal, so the answer is 6 mod 5 = 1

    
    # include <iostream>
    # include <cstring>
    # include <cstdio>
    using namespace std;
    typedef long long LL;
    LL p,mod;LL n;
    inline LL quick_mul(LL x,LL y,LL MOD){
        x=x%MOD,y=y%MOD;
        return ((x*y-(LL)(((long double)x*y+0.5)/MOD)*MOD)%MOD+MOD)%MOD;
    }
    LL qmod(LL a, LL b)
    {
        LL ans = 1, pow = a%mod;
        while(b)
        {
            if(b&1) ans = (quick_mul(ans,pow,mod))%mod;
            pow = (quick_mul(pow,pow,mod))%mod;
            b >>= 1;
        }
        return ans;
    }
    int main()
    {
        while(~scanf("%lld%lld",&n,&p))
        {
            mod=p;
            LL ans=qmod(2,n);
            ans=(ans-2+mod)%mod;
            printf("%lld
    ",ans);
        }
        return 0;
    }
    
    
    
    
    
    
    
    
    
  • 相关阅读:
    extjs4 数据实体模型
    WPF实现MDI窗体的方法
    WPF中图形表示语法详解(Path之Data属性语法
    Wpf DataGrid 数据绑定 排序 删除
    WPF: 使用TestApi模拟用户输入
    extjs4 事件处理
    WPF触发器
    XPath语法 在C#中使用XPath示例
    WPF 4 中DataGrid的模板列做双向数据绑定
    extjs4 标准面板
  • 原文地址:https://www.cnblogs.com/linruier/p/9846320.html
Copyright © 2011-2022 走看看