zoukankan      html  css  js  c++  java
  • 二分搜索树的java实现

     递归理解起来还是有点难,弄清楚搞了不短的时间

    package com.puple.atto.datastructure;

    import java.util.LinkedList;
    import java.util.Queue;

    public class BST<E extends Comparable<E>> {
    private class Node{
    public E e;
    public Node left,right;

    public Node(E e){
    this.e=e;
    left=null;
    right=null;
    }

    public Node(E e,Node left,Node right){
    this.e=e;
    this.left=left;
    this.right=right;
    }

    @Override
    public String toString() {
    return ""+this.e;
    // return "value:"+this.e+",left:"+this.left.e+",rigth:"+this.right.e;
    }
    }

    private Node root;
    private int size;

    public BST(){
    root=null;
    size=0;
    }

    public int size(){
    return size;
    }

    public boolean isEmpty(){
    return size==0;
    }

    private Node add(Node node,E e){
    if (node==null){
    size++;
    return new Node(e);
    }
    if (e.compareTo(node.e)<0){
    node.left=add(node.left,e);
    }
    else if(e.compareTo(node.e)>0){
    node.right=add(node.right,e);
    }
    return node;
    }

    public void add(E e){
    root=add(root,e);
    }


    private boolean contains(Node node,E e){
    if (node==null){
    return false;
    }
    if(e.compareTo(node.e)==0){
    return true;
    }
    else if(e.compareTo(node.e)<0){
    return contains(node.left,e);
    }
    else{
    return contains(node.right,e);
    }
    }

    public boolean contains(E e){
    return contains(root,e);
    }


    public void preOrder(){
    preOrder(root);
    }

    private void preOrder(Node node){
    if (node==null){
    return;
    }
    System.out.println(node.e);
    preOrder(node.left);
    preOrder(node.right);
    }

    public void inOrder(){
    inOrder(root);
    }

    private void inOrder(Node node){
    if(node==null){
    return;
    }
    inOrder(node.left);
    System.out.println(node.e);
    inOrder(node.right);
    }

    public void postOrder(){
    postOrder(root);
    }

    private void postOrder(Node node){
    if(node==null){
    return;
    }
    postOrder(node.right);
    System.out.println(node.e);
    postOrder(node.left);
    }

    public void levelOrder(){
    Queue<Node> q=new LinkedList<>();
    q.add(root);
    while(!q.isEmpty()){
    Node cur=q.remove();
    System.out.println(cur.e);
    if (cur.left!=null){
    q.add(cur.left);
    }
    if (cur.right!=null){
    q.add(cur.right);
    }
    }
    }

    public E minimum(){
    if(size==0){
    throw new IllegalArgumentException("BST is empty");
    }
    return minimum(root).e;
    }

    private Node minimum(Node node){
    if(node.left==null){
    return node;
    }
    return minimum(node.left);
    }

    public E maximum(){
    if(size==0){
    throw new IllegalArgumentException("BST is empty.");
    }
    return maximum(root).e;
    }

    private Node maximum(Node node){
    if (node.right==null){
    return node;
    }
    return maximum(node.right);
    }


    public E removeMin(){
    E ret=minimum();
    root=removeMin(root);
    return ret;
    }

    private Node removeMin(Node node){

    if(node.left == null){
    Node rightNode = node.right;
    node.right = null;
    size --;
    return rightNode;
    }
    node.left=removeMin(node.left);
    return node;
    }


    public E removeMax(){
    E ret=maximum();
    root=removeMax(root);
    return ret;
    }

    private Node removeMax(Node node){

    if(node.right == null){
    Node leftNode = node.left;
    node.left = null;
    size --;
    return leftNode;
    }
    node.right=removeMin(node.right);
    return node;
    }


    // 从二分搜索树中删除元素为e的节点
    public void remove(E e){
    root = remove(root, e);
    }

    // 删除掉以node为根的二分搜索树中值为e的节点, 递归算法
    // 返回删除节点后新的二分搜索树的根
    private Node remove(Node node, E e){

    if( node == null )
    return null;

    if( e.compareTo(node.e) < 0 ){
    node.left = remove(node.left , e);
    return node;
    }
    else if(e.compareTo(node.e) > 0 ){
    node.right = remove(node.right, e);
    return node;
    }
    else{ // e.compareTo(node.e) == 0

    // 待删除节点左子树为空的情况
    if(node.left == null){
    Node rightNode = node.right;
    node.right = null;
    size --;
    return rightNode;
    }

    // 待删除节点右子树为空的情况
    if(node.right == null){
    Node leftNode = node.left;
    node.left = null;
    size --;
    return leftNode;
    }

    // 待删除节点左右子树均不为空的情况

    // 找到比待删除节点大的最小节点, 即待删除节点右子树的最小节点
    // 用这个节点顶替待删除节点的位置
    Node successor = minimum(node.right);
    successor.right = removeMin(node.right);
    successor.left = node.left;

    node.left = node.right = null;

    return successor;
    }
    }






    public static void main(String[] args) {
    BST bst=new BST();
    bst.add(1);
    bst.add(8);

    bst.add(-1);
    bst.add(9);
    bst.add(-5);
    bst.add(-10);
    bst.add(-3);
    bst.add(17);
    bst.add(100);
    bst.add(-75);
    bst.add(-90);
    bst.add(-80);
    bst.add(120);
    // System.out.println(bst.root.e);
    // System.out.println(bst.contains(9));
    // bst.preOrder();
    // bst.inOrder();
    // bst.postOrder();

    }
    }
  • 相关阅读:
    归并之将两个有序数组合并(已測试)
    Embedded Android 协同翻译
    IOS中公布应用程序,进度条一直不走怎么处理
    《textanalytics》课程简单总结(2):topic mining
    编程小错误备忘录
    观察者模式
    scrapy递归抓取网页数据
    leetCode 95.Unique Binary Search Trees II (唯一二叉搜索树) 解题思路和方法
    spring4.0.0的配置和使用
    ios面试基础
  • 原文地址:https://www.cnblogs.com/linwenbin/p/11890407.html
Copyright © 2011-2022 走看看