zoukankan      html  css  js  c++  java
  • Pedro domingos

    Dear Professor:

              I am a university student in China and study on MLN recently;
             
              I have a question as follow:
              The joint distribution represented by a Markov network is given by $$P(X=x) = frac{1}{Z} prod_k phi_{k}(x_{{k}}) ag{2.1}$$ $$P(X=x) = frac{1}{Z} expleft(sum_j w_jf_j(x) ight) ag{2.2}$$
              The probability distribution over possible worlds x specified by the ground Markov network $M_{L, C}$ is given by $$P(X=x) = frac{1}{Z} expleft(sum_i w_in_i(x) ight) = frac{1}{Z}prod_i phi_{i}(x_{{i}})^{n_i(x)} ag{2.3}$$
              The probability of a ground predicate $X_l$ when its Markov blanket $B_l$ is in state $b_l$ is $$P(X_l=x_l|B_l=b_l) = frac{exp(sum_{f_i in F_l} w_if_i(X_l=x_l, B_l=b_l)))}{exp(sum_{f_i in F_l} w_if_i(X_l=0, B_l=b_l))+exp(sum_{f_i in F_l} w_if_i(X_l=1, B_l=b_l))} ag{3.3}$$
         
              I can't figure out how to derive equation(3.3) from equation(2.1) or equation(2.3), maybe equation(3.3) is a definition, not a derivation ??
              
  • 相关阅读:
    BZOJ5212 ZJOI2018历史(LCT)
    BZOJ5127 数据校验
    253. Meeting Rooms II
    311. Sparse Matrix Multiplication
    254. Factor Combinations
    250. Count Univalue Subtrees
    259. 3Sum Smaller
    156. Binary Tree Upside Down
    360. Sort Transformed Array
    348. Design Tic-Tac-Toe
  • 原文地址:https://www.cnblogs.com/linxd/p/5039801.html
Copyright © 2011-2022 走看看