zoukankan      html  css  js  c++  java
  • G(2^8)有限域

    G(2^8)有限域上的运算
    -----------------------------------------------------
    本原多项式P(x) = x8+x4+x3+x2+1        [1 0001 1101]
    定义 P(x) = 0 则 x8 = x4+x3+x2+1    [0 0001 1101]
    -----------------------------------------------------
    区间[0,255]可以表示成各种多项式。例如:
        0   = 00000000 = 0
        1   = 00000001 = x0 = 1
        2   = 00000010 = x2
        129 = 10000001 = x7+x
    -----------------------------------------------------
    加法:按位异或
    -----------------------------------------------------
    乘法:
        3*7        = (x+1)*(x2+x+1)
                = x*x2+x*x+x+x2+x+1
                = x3+1
                = 00001001
                = 9
        129*5    = (x7+1)*(x2+1)
                = x9+x7+x2+1
                = x5+x4+x3+x1 + x7+x2+1    ( 因为: x9 = x5+x4+x3+x1 )
                = x7+x5+x4+x3+x2+x1+1
                = 10111111
                = 191
    ------------------------------------------------------
    x的指数运算:可以得出x^i(i=0,1,2……),用于乘法运算。
        x0  = 00000001 = 1
        x1  = 00000010 = x1
        x2  = 00000100 = x2
        x3  = 00001000 = x3
        x4  = 00010000 = x4
        x5  = 00100000 = x5
        x6  = 01000000 = x6
        x7  = 10000000 = x7
        x8  = 00011101 = x4+x3+x2+1
        x9  = 00111010 = x1*x8 = x1*(x4+x3+x2+1) = x5+x4+x3+x1
        x10 = 01110100 = x1*x9 = x1*(x5+x4+x3+x1) = x6+x5+x4+x2
        x11 = 11101000
        x12 = 11001101 = x1*(x7+x6+x5+x3) = x8+x7+x6+x4
                                          = x4+x3+x2+1+x7+x6+x4
                                          = x7+x6+x3+x2+1
        x13 = 10000111
        ……

        x8 = x4+x3+x2+1 = 29 = 00111010
        x12= x7+x6+x3+x2+1 = 205 = 11001101
        则: 29*205=x20
        29/205 = x8/x12 = x251
        205/29 = x12/x8 = x4

    /*-----------------------------------------------------
    	用有限域实现加解密
    	本原多项式:	 0x11B( x8+x4+x3+x+1 )
    	明文:	C[i]
    	密文:	M[i]
    	DEF :	加密乘法因子 或 解密被除数. 注:DEF不能为0
    	加密:	M[i] = C[i] * DEF
    	解密:	C[i] = M[i] / DEF
    */
    int XN[256], NX[256];
    void genlt()
    {
    	int i, j;
    	
    	XN[0] = 1;
    	for (i = 1; i < 256; i++){
    		j = ( XN[i-1] << 1) ^ XN[i-1];
    		if ((j & 0x100) != 0)	j ^= 0x11B;        
    		XN[i] = j;
    	}
    	
    	NX[0] = NX[1] = 0;
    	for (i = 1; i < 255; i++)	NX[XN[i]] = i;
    }
    int mul( int a, int b )
    {
    	if( a==0 || b==0 )	return 0;
    	else	return XN[ (NX[a]+NX[b])%255 ];
    }
    int div( int a, int b )
    {
    	int x;
    	if( a==0 )	return 0;
    	if( b==0 )	return -1;
    	x = NX[a]-NX[b] < 0 ? NX[a]-NX[b]+255 : NX[a]-NX[b];
    	return XN[x];
    }
    void main()
    {
    	genlt();
    	int i;
    	unsigned char DEF = 2;
    	unsigned char C[256], M[256], O[256];
    	sprintf( (char*)C, "zhongguo shi shufa de haiyang !" );
    	printf( "%s\n", C );
    	for( i=0; i<256; i++ ){
    		M[i] = mul( DEF, C[i] );
    	}
    	printf( "%s\n", M );
    	for( i=0; i<256; i++ ){
    		O[i] = div( M[i], DEF );
    	}
    	printf( "%s\n", O );
    }
    
    
  • 相关阅读:
    其他综合收益的会计处理
    公允价值变动损益与投资收益的区别是什么?
    公允价值变动损益属于什么科目
    交易性金融资产和其他权益工具投资的区别
    属于在某一时段内履行的履约义务的情形
    合同履约成本和合同取得成本
    linux find查找并拷贝 exec xargs区别[转载]
    centos 安装discuz
    批处理变量,扩展,及变量截取
    常用DDL
  • 原文地址:https://www.cnblogs.com/linxr/p/1927006.html
Copyright © 2011-2022 走看看