zoukankan      html  css  js  c++  java
  • 时间片轮询-应用程序架构

    大致应用程序的架构有三种:
    1. 简单的前后台顺序执行程序,这类写法是大多数人使用的方法,不需用思考程序的具体架构,直接通过执行顺序编写应用程序即可。

    2. 时间片轮询法,此方法是介于顺序执行与操作系统之间的一种方法。

    3. 操作系统,此法应该是应用程序编写的最高境界。

    下面就分别谈谈这三种方法的利弊和适应范围

    1. 前后台顺序执行法

    前后台程序一般是指没有“操作系统”的程序。所谓的前台,就是主动去判断处理某个事务,这个是主循环里要做的事,也就是你代码主要要写的。所谓的后台,指的是:中断,也就是不需要你的CPU去判别,就会自动进入某一种状态,你在这个状态下做你要做的事就可以了。 

           这种方法,应用程序比较简单。实时性,并行性要求不太高的情况下是不错的方法,程序设计简单,思路比较清晰。但是当应用程序比较复杂的时候,如果没有一个完整的流程图,恐怕别人很难看懂程序的运行状态,而且随着程序功能的增加,编写应用程序的工程师的大脑也开始混乱。即不利于升级维护,也不利于代码优化。 

           这种方法大多数人都会采用,而且我们接受的教育也基本都是使用此法。对于我们这些基本没有学习过数据结构,程序架构的单片机工程师来说,无疑很难在应用程序的设计上有一个很大的提高,也导致了不同工程师编写的应用程序很难相互利于和学习。 

    下面就写一个顺序执行的程序模型,方便和后面要写的两种方法对比:

    1.顺序执行:
    代码:
    /**************************************************************************************
    * FunctionName   : main()
    * Description    : 主函数
    * EntryParameter : None
    * ReturnValue    : None
    **************************************************************************************/
    int main(void) 

        uint8 keyValue;
     
        InitSys();                  // 初始化
     
        while (1)
        {
            TaskDisplayClock();
            keyValue = TaskKeySan();
            switch (keyValue)
           {
                case x: TaskDispStatus(); break;
                ...
                default: break;
            }
        }

    }

    2. 时间片轮询法
     
           时间片轮询法,在很多书籍中有提到,而且有很多时候都是与操作系统一起出现,也就是说很多时候是操作系统中使用了这一方法。不过我们这里要说的这个时间片轮询法并不是挂在操作系统下,而是在前后台程序中使用此法。也是本贴要详细说明和介绍的方法。
     
           对于时间片轮询法,虽然有不少书籍都有介绍,但大多说得并不系统,只是提提概念而已。下面本人将详细介绍本人模式,并参考别人的代码建立的一个时间片轮询架构程序的方法,我想,对初学者有一定的借鉴作用。
     
           在这里我们先介绍一下定时器的复用功能。使用1个定时器,可以是任意的定时器,这里不做特殊说明,下面假设有3个任务,那么我们应该做如下工作:
     
    1. 初始化定时器,这里假设定时器的定时中断为1ms(当然你可以改成10ms,这个和操作系统一样,中断过于频繁效率就低,中断太长,实时性差)。
     
    2. 定义一个数值。
     
    代码:
    #define TASK_NUM   (3)                  //  这里定义的任务数为3,表示有三个任务会使用此定时器定时。
     
    uint16 TaskCount[TASK_NUM] ;           //  这里为三个任务定义三个变量来存放定时值

    uint8  TaskMark[TASK_NUM];             //  同样对应三个标志位,为0表示时间没到,为1表示定时时间到。

    3. 在定时器中断服务函数中添加:

    代码:
    /**************************************************************************************
    * FunctionName : TimerInterrupt()
    * Description : 定时中断服务函数
    * EntryParameter : None
    * ReturnValue : None
    **************************************************************************************/
    void TimerInterrupt(void)
    {
        uint8 i;


        for (i=0; i<TASKS_NUM; i++) 
        {
            if (TaskCount[i]) 
            {
                  TaskCount[i]--; 
                  if (TaskCount[i] == 0) 
                  {
                        TaskMark[i] = 0x01; 
                  }
            }
       }
    }
     
    代码解释:定时中断服务函数,在中断中逐个判断,如果定时值为0了,表示没有使用此定时器或此定时器已经完成定时,不着处理。否则定时器减一,知道为零时,相应标志位值1,表示此任务的定时值到了。
     
    4. 在我们的应用程序中,在需要的应用定时的地方添加如下代码,下面就以任务1为例:

    代码:
    TaskCount[0] = 20;       // 延时20ms
    TaskMark[0]  = 0x00;     // 启动此任务的定时器
    到此我们只需要在任务中判断TaskMark[0] 是否为0x01即可。其他任务添加相同,至此一个定时器的复用问题就实现了。用需要的朋友可以试试,效果不错哦。。。。。。。。。。。
     
    通过上面对1个定时器的复用我们可以看出,在等待一个定时的到来的同时我们可以循环判断标志位,同时也可以去执行其他函数。
     
    循环判断标志位:
    那么我们可以想想,如果循环判断标志位,是不是就和上面介绍的顺序执行程序是一样的呢?一个大循环,只是这个延时比普通的for循环精确一些,可以实现精确延时。
     
    执行其他函数:
    那么如果我们在一个函数延时的时候去执行其他函数,充分利用CPU时间,是不是和操作系统有些类似了呢?但是操作系统的任务管理和切换是非常复杂的。下面我们就将利用此方法架构一直新的应用程序。
     
    时间片轮询法的架构:
     
    1.设计一个结构体:
     
    代码:
    // 任务结构
    typedef struct _TASK_COMPONENTS
    {
        uint8 Run;                 // 程序运行标记:0-不运行,1运行
        uint8 Timer;              // 计时器
        uint8 ItvTime;              // 任务运行间隔时间
        void (*TaskHook)(void);    // 要运行的任务函数
    } TASK_COMPONENTS;       // 任务定义
     
    这个结构体的设计非常重要,一个用4个参数,注释说的非常详细,这里不在描述。
     
    2. 任务运行标志出来,此函数就相当于中断服务函数,需要在定时器的中断服务函数中调用此函数,这里独立出来,并于移植和理解。
     
    代码:
    // 任务标志处理
    void TaskRemarks(void)
    {
        uint8 i;
        for (i=0; i<TASKS_MAX; i++)          // 逐个任务时间处理
        {
             if (TaskComps[i].Timer)          // 时间不为0
            {
                TaskComps[i].Timer--;         // 减去一个节拍
                if (TaskComps[i].Timer == 0)       // 时间减完了
                {
                     TaskComps[i].Timer = TaskComps[i].ItvTime;       // 恢复计时器值,从新下一次
                     TaskComps[i].Run = 1;           // 任务可以运行
                }
            }
       }
    }
     
    大家认真对比一下次函数,和上面定时复用的函数是不是一样的呢?
     
    3. 任务处理

    代码:
    void TaskProcess(void)
    {
        uint8 i;
        for (i=0; i<TASKS_MAX; i++)           // 逐个任务时间处理
        {
             if (TaskComps[i].Run)           // 时间不为0
            {
                 TaskComps[i].TaskHook();         // 运行任务
                 TaskComps[i].Run = 0;          // 标志清0
            }
        }   
    }
     
    此函数就是判断什么时候该执行那一个任务了,实现任务的管理操作,应用者只需要在main()函数中调用此函数就可以了,并不需要去分别调用和处理任务函数。
     
    到此,一个时间片轮询应用程序的架构就建好了,大家看看是不是非常简单呢?此架构只需要两个函数,一个结构体,为了应用方面下面将再建立一个枚举型变量。
     
    下面我就就说说怎样应用吧,假设我们有三个任务:时钟显示,按键扫描,和工作状态显示。
     
    1. 定义一个上面定义的那种结构体变量

    代码:
    static TASK_COMPONENTS TaskComps[] = 
    {
        {0, 1000, 1000, TaskDisplayClock},            // 显示时钟
        {0, 20, 20, TaskKeySan},               // 按键扫描
        {0, 30, 30, TaskDispStatus},            // 显示工作状态
         // 这里添加你的任务。。。。
    };
     
    在定义变量时,我们已经初始化了值,这些值的初始化,非常重要,跟具体的执行时间优先级等都有关系,这个需要自己掌握。
     
    ①大概意思是,我们有三个任务,每1s执行一下时钟显示,因为我们的时钟最小单位是1s,所以在秒变化后才显示一次就够了。
    ②由于按键在按下时会参数抖动,而我们知道一般按键的抖动大概是20ms,那么我们在顺序执行的函数中一般是延伸20ms,而这里我们每20ms扫描一次,是非常不错的出来,即达到了消抖的目的,也不会漏掉按键输入。
    ③为了能够显示按键后的其他提示和工作界面,我们这里设计每30ms显示一次,如果你觉得反应慢了,你可以让这些值小一点。后面的名称是对应的函数名,你必须在应用程序中编写这函数名称和这三个一样的任务。
     
    2. 任务列表

    代码:
    // 任务清单
    typedef enum _TASK_LIST
    {
        TAST_DISP_CLOCK,            // 显示时钟
        TAST_KEY_SAN,             // 按键扫描
        TASK_DISP_WS,             // 工作状态显示
         // 这里添加你的任务。。。。
         TASKS_MAX                                           // 总的可供分配的定时任务数目
    } TASK_LIST;
     
    好好看看,我们这里定义这个任务清单的目的其实就是参数TASKS_MAX的值,其他值是没有具体的意义的,只是为了清晰的表面任务的关系而已。
     
    3. 编写任务函数
     
    代码:
    void TaskDisplayClock(void)
    {
     
    }
    void TaskKeySan(void)
    {


    }
    void TaskDispStatus(void)
    {


    }
     
    // 这里添加其他任务。。。。。。。。。
     
    现在你就可以根据自己的需要编写任务了。
     
    4. 主函数
     
    代码:
    int main(void) 

        InitSys();                  // 初始化
        while (1)
        {
            TaskProcess();             // 任务处理
        }
    }
     
    到此我们的时间片轮询这个应用程序的架构就完成了,你只需要在我们提示的地方添加你自己的任务函数就可以了。是不是很简单啊,有没有点操作系统的感觉在里面?
     
           不防试试把,看看任务之间是不是相互并不干扰?并行运行呢?当然重要的是,还需要,注意任务之间进行数据传递时,需要采用全局变量,除此之外还需要注意划分任务以及任务的执行时间,在编写任务时,尽量让任务尽快执行完成。。。。。。。。。


    3.操作系统
     
           操作系统的本身是一个比较复杂的东西,任务的管理,执行本事并不需要我们去了解。但是光是移植都是一件非常困难的是,虽然有人说过“你如果使用过系统,将不会在去使用前后台程序”。但是真正能使用操作系统的人并不多,不仅是因为系统的使用本身很复杂,而且还需要购买许可证(ucos也不例外,如果商用的话)。
     
           这里本人并不想过多的介绍操作系统本身,因为不是一两句话能过说明白的,下面列出UCOS下编写应该程序的模型。大家可以对比一下,这三种方式下的各自的优缺点。
     
    代码:
    int main(void) 

        OSInit();                // 初始化uCOS-II
        OSTaskCreate((void (*) (void *)) TaskStart,        // 任务指针
                    (void   *) 0,            // 参数
                    (OS_STK *) &TaskStartStk[TASK_START_STK_SIZE - 1], // 堆栈指针
                    (INT8U   ) TASK_START_PRIO);        // 任务优先级
        OSStart();                                       // 启动多任务环境
                                            
        return (0); 
    }
     
    代码:
    //任务创建,只创建任务,不完成其他工作
    void TaskStart(void* p_arg)
    {
        OS_CPU_SysTickInit();                                       // Initialize the SysTick.
    #if (OS_TASK_STAT_EN > 0)
        OSStatInit();                                               // 这东西可以测量CPU使用量 
    #endif
     OSTaskCreate((void (*) (void *)) TaskLed,     // 任务1
                    (void   *) 0,               // 不带参数
                    (OS_STK *) &TaskLedStk[TASK_LED_STK_SIZE - 1],  // 堆栈指针
                    (INT8U   ) TASK_LED_PRIO);         // 优先级
     // Here the task of creating your
                    
        while (1)
        {
            OSTimeDlyHMSM(0, 0, 0, 100);
        }
    }

  • 相关阅读:
    JAVA的反射理解
    网络编程-小结
    JAVA多线程的总结
    Mysql基本语句的总结
    IO流
    JAVA集合介绍
    时间复杂度
    JAVA面向对象-多态的理解
    求A的B次方
    最大公约数
  • 原文地址:https://www.cnblogs.com/linxw-blog/p/12611666.html
Copyright © 2011-2022 走看看