环境:windows 7+matlab2016a+vs2013
caffe下载地址:https://github.com/BVLC/caffe/tree/windows
1 进入caffe-windows的windows文件夹,Copy .windowsCommonSettings.props.example
to .windowsCommonSettings.props
2 打开caffe工程,编辑CommonSettings.props文件,以下是cpu版本设置
<CpuOnlyBuild>true</CpuOnlyBuild>
<UseCuDNN>false</UseCuDNN>
<CudaVersion>7.5</CudaVersion>
<PythonSupport>false</PythonSupport>
<MatlabSupport>true</MatlabSupport>
<CudaDependencies></CudaDependencies>
<PropertyGroup Condition="'$(MatlabSupport)'=='true'">
<MatlabDir>C:Program FilesMATLABR2016a</MatlabDir>
<LibraryPath>$(MatlabDir)externlibwin64microsoft;$(LibraryPath)</LibraryPath>
<IncludePath>$(MatlabDir)externinclude;$(IncludePath)</IncludePath>
</PropertyGroup>
3 选择matcaffe项目,点击编译(会自动去下载第三方库),在Buildx64Release会生成相应的文件
4 将上面Buildx64Release绝对路径加入到系统环境path变量中,同时将Buildx64Releasematcaffe加入到matlab路径中。
5 重新启动matlab,调用caffe.reset_all(),则说明ok。
>> caffe.reset_all();
Cleared 0 solvers and 0 stand-alone nets
>>
python使用
下载安装anaconda
安装protobuf:在命令行输入:pip install protobuf
使用spyder,并且设置Python路径
import caffe
caffe在matlab中使用:
function train() solver_def_file = 'model/lenet_solver.prototxt'; caffe.set_mode_cpu(); caffe.reset_all(); solver = caffe.Solver(solver_def_file); % solver.solve();%一次性迭代 close all; hold on%画图用的 iter_ = solver.iter(); while iter_<10000 solver.step(1);%一步一步迭代 iter_ = solver.iter(); loss=solver.net.blobs('loss').get_data();%取训练集的loss if iter_==1 loss_init = loss; else y_l=[loss_init loss]; x_l=[iter_-1, iter_]; plot(x_l, y_l, 'r-'); drawnow loss_init = loss; end if mod(iter_, 100) == 0 accuracy=solver.test_nets.blobs('accuracy').get_data();%取验证集的accuracy if iter_/100 == 1 accuracy_init = accuracy; else x_l=[iter_-100, iter_]; y_a=[accuracy_init accuracy]; plot(x_l, y_a,'g-'); drawnow accuracy_init=accuracy; end end end
测试
function test() net = init_net(); im_data = 255-caffe.io.load_image('image/00082.png'); res = net.forward({im_data}); [~, idx ]= max(res{1}); disp(idx-1); function net = init_net() caffe.set_mode_cpu(); caffe.reset_all(); deploy = 'model/lenet_deploy.prototxt'; caffe_model = 'snapshot/lenet_iter_10000.caffemodel'; net = caffe.Net(deploy, caffe_model, 'test');
微调
function retrain() caffe.set_mode_cpu(); caffe.reset_all(); caffe_model = 'snapshot/lenet_iter_10000.caffemodel'; solver = caffe.Solver('model/lenet_solver.prototxt'); solver.net.copy_from(caffe_model); % solver.solve(); close all; hold on%画图用的 iter_ = solver.iter(); while iter_<10000 solver.step(1); iter_ = solver.iter(); loss=solver.net.blobs('loss').get_data();%取训练集的loss if iter_==1 loss_init = loss; else y_l=[loss_init loss]; x_l=[iter_-1, iter_]; plot(x_l, y_l, 'r-'); drawnow loss_init = loss; end if mod(iter_, 100) == 0 accuracy=solver.test_nets.blobs('accuracy').get_data();%取验证集的accuracy if iter_/100 == 1 accuracy_init = accuracy; else x_l=[iter_-100, iter_]; y_a=[accuracy_init accuracy]; plot(x_l, y_a,'g-'); drawnow accuracy_init=accuracy; end end end