zoukankan      html  css  js  c++  java
  • ML | spectral clustering

    What's xxx

    In multivariate statistics and the clustering of data, spectral clustering techniques make use of the spectrum (eigenvalues) of the similarity matrix of the data to perform dimensionality reduction before clustering in fewer dimensions. The similarity matrix is provided as an input and consists of a quantitative assessment of the relative similarity of each pair of points in the dataset.

    它的思想就是将聚类和图划分等同起来,然后聚类就成了要怎么划分的问题了。

    Algorithm

    不同的谱聚类算法就是计算Laplacian matrix的算法不一样。

    1. 计算相似矩阵S;(相似就连边);
    2. 计算Laplacian矩阵L(是图论里的概念);
    3. 计算L的特征向量(注意这里是最小的k个特征向量);组成转换矩阵;
    4. 降维;
    5. 聚类;(k-means)

    The simplest algorithm

    Given a simple graph G with n vertices, its Laplacian matrix $L:=(ell_{i,j})_{n imes n}$ is defined as:

    $L = D - A.$
    That is, it is the difference of the degree matrix D and the adjacency matrix A of the graph. In the case of directed graphs, either the indegree or outdegree might be used, depending on the application.

    打算整理关于《机器学习》的基础算法,是因为现在研究生找工作的时候机器学习基本是个必考点了,懂一点总是好的。但是那么多公式、原理估计自己也记不住,所以还是只记一些关键的思路。如果想了解更多的细节,我相信网上可以找到更多。

  • 相关阅读:
    C++的开源跨平台日志库glog学习研究(一)
    C++实现的字符串模糊匹配
    Git&GitHub学习日志
    UTF-8和GBK等中文字符编码格式介绍及相互转换
    HDU
    340. 通信线路(分层图最短路)
    ACwing 你能回答这些问题吗(线段树求最大连续字段和)
    Laptop(线段树+离散化)
    Infinite Inversions(树状数组+离散化)
    HDU-4417-Super Mario(主席树解法)
  • 原文地址:https://www.cnblogs.com/linyx/p/3855382.html
Copyright © 2011-2022 走看看