zoukankan      html  css  js  c++  java
  • CenterMask论文记录和模型训练

    详细内容链接

    创新点

    • a novel spatial attention-guided mask (SAG-Mask) branch to anchor-free one stage object detector

    SAG-Mask

    在分割任务中在预测mask的卷积层中加入注意力机制 SAM

    • Backbone : VoVNetV2, with two effective strategies: (1) add residual connection into each OSA module to ease optimization for alleviating the optimization problem of larger VoVNet [19] and (2)effective Squeeze-Excitation (eSE) dealing with the channelinformation loss problem of original SE.

    OSA

    One-Shot Aggregation

    DenseNet在目标检测任务上表现很好。因为它通过聚合不同receptive field特征层的方式,保留了中间特征层的信息。它通过feature reuse 使得模型的大小和flops大大降低,但是,实验证明,DenseNet backbone更加耗时也增加了能耗:dense connection架构使得输入channel线性递增,导致了更多的内存访问消耗,进而导致更多的计算消耗和能耗。

    在OSA module中,每一层产生两种连接,一种是通过conv和下一层连接,产生receptive field 更大的feature map,另一种是和最后的输出层相连,以聚合足够好的特征。

    eSE

    Squeeze-Excitation (SE) [13] channel attention module 减少了通道数,这样虽然减少了计算成本,但是造成了通道信息损失

    提出eSE模块,用channel-wise global average pooling保留通道维度,然后接1个C维度的全连接层

    计算公式:

    关键点

    one stage / anchor free / attention module

    组成部分

    (1) backbone for feature extraction

    VoVNetV2

    在VoVNet基础上增加了 residual connection 和 eSE注意力模块

    (2) FCOS [33] :detection head

    an anchor-free and proposal-free object detection in a per-pixel prediction manner as like FCN

    (3) mask head :The procedure of masking objects is composed of detecting objects from the FCOS [33] box head and then predicting segmentation masks inside the cropped regionsin a per-pixel manner

    Adaptive RoI Assignment Function

    根据RoI scales对RoIs映射到不同层次的feature map上,大尺度的roi映射到高层的feature level

    对应映射关系可计算:

    安装

    pip install cython
    pip install -U 'git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI'
    pip install -i https://pypi.douban.com/simple/ pyyaml==5.1.1
    python -m pip install 'git+https://github.com/facebookresearch/detectron2.git'
    python -m pip install detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu101/torch1.5/index.html
    
    git clone https://github.com/youngwanLEE/centermask2.git
    
    

    修改数据集地址: /usr/local/lib/python3.6/dist-packages/detectron2/data/datasets/builtin.py

    # Register them all under "./datasets"
    _root = os.getenv("DETECTRON2_DATASETS", "datasets")
    
    改为
    
    # Register them all under "./datasets"
    _root = os.getenv("DETECTRON2_DATASETS", "/xxx/xxx/")
    

    Config:

    /home/centermask2/configs/centermask/centermask_V_39_eSE_FPN_ms_3x.yaml

    Train:

    CUDA_VISIBLE_DEVICES=2,3 python train_net.py --config-file "configs/centermask/centermask_V_39_eSE_FPN_ms_3x.yaml" --num-gpus 2

    CUDA_VISIBLE_DEVICES=0,1,2,3 python train_net.py --config-file "configs/centermask/centermask_V_39_eSE_FPN_ms_3x.yaml" --num-gpus 4

    Test:

    python train_net.py --config-file "configs/centermask/centermask_V_39_eSE_FPN_ms_3x.yaml" --num-gpus 1 --eval-only MODEL.WEIGHTS output/centermask/CenterMask-V-39-ms-3x/model_0019999.pth

  • 相关阅读:
    【PAT甲级】1128 N Queens Puzzle (20分)
    Codeforces Global Round 7D(马拉车/PAM,回文串)
    【PAT甲级】1127 ZigZagging on a Tree (30分)(已知中序后序蛇形输出层次遍历)
    SDOI2012 体育课
    APIO2018 Circle selection 选圆圈
    [科技] 求数列的前k次方和
    APIO2016 Fireworks
    CTSC2018 暴力写挂
    ZJOI2018 胖
    SDOI2017 数字表格
  • 原文地址:https://www.cnblogs.com/linzhenyu/p/13570431.html
Copyright © 2011-2022 走看看