Graph Convolution
基础版本
wget https://data.deepai.org/Cora.zip
import math
import torch
from torch.nn.parameter import Parameter
from torch.nn.modules.module import Module
class GraphConvolution(Module):
"""
Simple GCN layer, similar to https://arxiv.org/abs/1609.02907
"""
def __init__(self, in_features, out_features, bias=True):
super(GraphConvolution, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.weight = Parameter(torch.FloatTensor(in_features, out_features))
if bias:
self.bias = Parameter(torch.FloatTensor(out_features))
else:
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self):
stdv = 1. / math.sqrt(self.weight.size(1))
self.weight.data.uniform_(-stdv, stdv)
if self.bias is not None:
self.bias.data.uniform_(-stdv, stdv)
def forward(self, input, adj):
# input [in_features]
# adj [num]
support = torch.mm(input, self.weight)
# support [out_feature]
output = torch.spmm(adj, support)
# output [out_feature]
if self.bias is not None:
return output + self.bias
else:
return output
def __repr__(self):
return self.__class__.__name__ + ' ('
+ str(self.in_features) + ' -> '
+ str(self.out_features) + ')'
torch-geometric
依赖
pip install torch-scatter torch-sparse torch-cluster torch-spline-conv -f https://pytorch-geometric.com/whl/torch-${TORCH}.html
pip install torch-scatter torch-sparse torch-cluster torch-spline-conv -f https://pytorch-geometric.com/whl/torch-1.8.0+cu111.html
cuda
conda install cudatoolkit=11.0 -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/linux-64/
conda install cudnn=7.4.1 -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/linux-64/