题目传送门
中文翻译:
给定一颗无向带权树,要切断所有叶子节点和根节点的联系,每次切断的费用不能超过上限 Limit,问在保证 总费用 <=m 的情况下最小的 Limit
解题思路:
f[i]表示以i为根的树的最佳答案,加二分答案.
AC代码:
#include<iostream> #include<cstdio> #include<cstring> #include<algorithm> using namespace std; long long n,m,head[1001],tot,MAX,l = 1,ans,f[1001]; struct kkk{ int to,v,next; }e[1001]; inline void add(int x,int y,int z) { e[++tot].v = z; e[tot].to = y; e[tot].next = head[x]; head[x] = tot; } inline void dfs(int u,int limit) { bool flag = 0; f[u] = 0; for(int i = head[u];i != 0; i = e[i].next) { flag = 1; int p = e[i].to; dfs(p,limit); if(e[i].v <= limit) f[u] += min(f[p],(long long)e[i].v); else f[u] += f[p]; } if(!flag) f[u] = 0x3f3f3f;//如果用int,此处会加爆,所以要用long long } int main() { while(scanf("%lld%lld",&n,&m) != EOF) { MAX = 0;l = 1; if(n == 0 && m == 0) return 0; memset(head,0,sizeof(head)); tot = 0; for(int i = 1;i < n; i++) { int x,y,z; scanf("%d%d%d",&x,&y,&z); add(x,y,z); MAX = max(MAX,(long long)z); } ans = -1; while(l <= MAX) { int mid = (l + MAX) >> 1; dfs(1,mid); if(f[1] <= m) { ans = mid; MAX = mid - 1; } else l = mid + 1; } printf("%lld ",ans); } return 0; }