zoukankan      html  css  js  c++  java
  • 洛谷P1164小A点菜(01背包)

    题目背景

    uim神犇拿到了uoira(镭牌)后,立刻拉着基友小A到了一家……餐馆,很低端的那种。

    uim指着墙上的价目表(太低级了没有菜单),说:“随便点”。

    题目描述

    不过uim由于买了一些辅(e)辅(ro)书,口袋里只剩MMM元(M≤10000)(M le 10000)(M10000)。

    餐馆虽低端,但是菜品种类不少,有NNN种(N≤100)(N le 100)(N100),第iii种卖aia_iai(ai≤1000)(a_i le 1000)(ai1000)。由于是很低端的餐馆,所以每种菜只有一份。

    小A奉行“不把钱吃光不罢休”,所以他点单一定刚好吧uim身上所有钱花完。他想知道有多少种点菜方法。

    由于小A肚子太饿,所以最多只能等待111秒。

    输入格式

    第一行是两个数字,表示NNN和MMM。

    第二行起NNN个正数aia_iai(可以有相同的数字,每个数字均在100010001000以内)。

    输出格式

    一个正整数,表示点菜方案数,保证答案的范围在intintint之内。

    输入输出样例

    输入 #1 
    4 4
    1 1 2 2
    
    输出 #1 
    3
    这个题和蓝书上CH5201这道是一样的,都是魔改01背包问题而来。设dp[i,j]表示前i种菜选或者不选,凑出来j元的种类数,可以得到转移方程方程 dp[i,j]=dp[i-1,j]+dp[i-1,j-a[i]];和01背包不同,这里直接把这两个i-1阶段的值相加了,因为要求的是方案总数,选或者不选都有贡献。不要被 dp[j]+=dp[j-a[i]]这种写法迷惑,dp[j]=dp[j]+dp[j-a[i]]里右边两项都是上一个阶段的,左边一项是当前阶段的,满足线性dp的要求。要注意的是,存在一种情况是只买第i种菜凑成m元,这种情况决定了我们需要为dp[i][0]赋值为1,一维数组的话就是dp[0]=1,每每循环到j=a[i]
    时,dp[0]=1就是剩余的钱刚好买完一个菜后用完,是可以用完的情况,所以要在一开始就赋值为1(循环里会用到它而不改变它的值),再次注意“dp[i,j]表示前i种菜选或者不选”,是前i种而不包括第i种,dp[i,0]代表前i种不选(没花钱)而选了价值为a[i]=m的第i种菜品导致直接凑够了钱数要求,这种方案数为1就很好理解了。
    #include <bits/stdc++.h>
    using namespace std;
    int a[105];
    int dp[105]={0};
    int main()
    {
        int n,m;
        cin>>n>>m;
        int i,j;
        for(i=1;i<=n;i++)
        {
            scanf("%d",&a[i]);
        }
        dp[0]=1;
        for(i=1;i<=n;i++)
        {
            for(j=m;j>=a[i];j--)
            {
                dp[j]+=dp[j-a[i]];//实际上转移方程是 dp[i,j]=dp[i-1,j]+dp[i-1,j-a[i]]; 不要被一维数组的写法搞晕 
            }
        }
        cout<<dp[m];//要求恰好花掉m元 
        return 0;
    }


  • 相关阅读:
    错误: error C4996: 'strcpy': This function or variable may be unsafe. Consider using strcpy_s instead. 的处理方法
    C语言习题
    嵌入式芯片STM32F407
    c语言课后习题
    求方程式的根
    C语言课后习题
    LINUX常用指令
    在 pythonanywhere 上搭建 django 程序(Virtualenv+python2.7+django1.8)
    Git远程操作详解
    ./configure,make,make install的作用
  • 原文地址:https://www.cnblogs.com/lipoicyclic/p/12337512.html
Copyright © 2011-2022 走看看