zoukankan      html  css  js  c++  java
  • Lining Up

    AtCoder - 2271-Lining Up
               
               
                   
                       
                        原创                                                                                                                                            fadedsun
                        最后发布于2017-08-07 10:10:15                   
                        阅读数 656
                       
                           
                            收藏
                       
                   
                                   
                   
                   
                                                                    展开
                                       
               
           
       
       
           
                   
                   
                                       
            
               
                                           
                       
                       
                                                Problem Statement
    There are N people, conveniently numbered 1 through N. They were standing in a row yesterday, but now they are unsure of the order in which they were standing. However, each person remembered the following fact: the absolute difference of the number of the people who were standing to the left of that person, and the number of the people who were standing to the right of that person. According to their reports, the difference above for person i is Ai.
    Based on these reports, find the number of the possible orders in which they were standing. Since it can be extremely large, print the answer modulo 109+7. Note that the reports may be incorrect and thus there may be no consistent order. In such a case, print 0.
    Constraints
    1≦N≦105
    0≦Ai≦N−1
    Input
    The input is given from Standard Input in the following format:
    N
    A1 A2 … AN
    Output
    Print the number of the possible orders in which they were standing, modulo 109+7.
    Sample Input 1
    5
    2 4 4 0 2
    Sample Output 1
    4
    There are four possible orders, as follows:
    2,1,4,5,3
    2,5,4,1,3
    3,1,4,5,2
    3,5,4,1,2
    Sample Input 2
    7
    6 4 0 2 4 0 2
    Sample Output 2
    0
    Any order would be inconsistent with the reports, thus the answer is 0.
    Sample Input 3
    8
    7 5 1 1 7 3 5 3
    Sample Output 3
    16
     
    题意:
    有n个人,他们只记得昨天站在他们右边的人和站在左边的人的人数差值。根据差值,问有多少种可能的站法。
     
    解题思路:
    首先分奇数和偶数讨论。
    1.奇数:站在中间的人,左右相差的人数肯定一样多,所以为0.且0只会有一个。
           从中间往俩边延伸,可以知道每移动一位,那么差的人数增加2;
           那么奇数情况下,只会有0,2,4,6,8.且0只有一个。其它2个。
    2.偶数情况,可以知道没有为0的人。从1开始。1,3,5,7,。个数都为2.
    因为0,肯定站中间,不用管,其他的左右对称,出现次数肯定为2.
    如果可以,因为,位置有俩个,一个站的位置确定,另一个人就确定了,
    那么根据组合排列中的乘法原理,就可得知。
     
     
    注意点:

    记得取模
    判断出现次数是否符合规则
    小心数据太大溢出
    取模要根据乘法取模规则
    # include <cstdio>
    # include <map>
    # include <cmath>
    
    using namespace std;
    
    const int mod = 1e9+7;
    
    int main()
    {
        int n;
        int  a[100005];
        map<int,int> m;
        scanf("%d",&n);
    
        for(int i = 0;i < n;i++)
        {
            scanf("%d",&a[i]);
            m[a[i]]++;
        }
    
        int flag = 0; 
        if(n%2) //奇数 
        {
            if(m[0] != 1)
            {
                flag = 1;
            }
            for(int i = 2;i < n;i+=2)
            {
                if(m[i] != 2)
                {
                    flag = 1;
                }
            }
        }else{
            for(int i = 1;i < n;i+=2)
            {
                if(m[i] != 2)
                {
                    flag = 1;
                }
            }
        }
        long long sum = 1;
    
        for(int i =0;i < floor(n/2);i++)
        {
            sum = ((sum % mod) * 2)% mod;
        }
    
        if(n%2)
        {
            if(flag)
            printf("0
    ");
            else
            printf("%lld
    ",sum);
        }   
        else
        {
            if(flag)
            printf("0
    ");
            else
            printf("%lld
    ",sum);
        }
    
        return 0;
     } 
     
  • 相关阅读:
    几乎所有企业都要参加的网络安全大考,应该如何准备?
    腾讯正式开源图计算框架Plato,十亿级节点图计算进入分钟级时代
    从“指南”到“法律”,网络安全等保2.0即将实施,企业应如何备考?|群分享预告
    享受release版本发布的好处的同时也应该警惕release可能给你引入一些莫名其妙的大bug
    使用Task的一些知识优化了一下同事的多线程协作取消的一串代码
    从真实项目中抠出来的设计模式——第三篇:责任链模式
    从真实项目中抠出来的设计模式——第二篇:过滤器模式
    从真实项目中抠出来的设计模式——第一篇:策略模式
    在redis中使用lua脚本让你的灵活性提高5个逼格
    redis大幅性能提升之使用管道(PipeLine)和批量(Batch)操作
  • 原文地址:https://www.cnblogs.com/lipu123/p/12233351.html
Copyright © 2011-2022 走看看