题目描述
十九世纪的时候,Moriz Stern (1858)与Achille Brocot (1860)发明了“一棵树”。据说,经由一些简单的规则而产生的这一棵树上,可以包含零以上所有的有理数。这棵树看起来大致这样:
你观察出规则了吗?
首先,他们在第一列放两个“分数”,第一个是0 / 1,代表0;第二个是1 / 0,代表无穷大。接着他们一列一列地产生这棵树,当他们要产生第k+1列的时候,就先把前k列所有的分数按照大小排成一列(假设有n个),在这些数之间会有n - 1个间隔,那么第k + 1列就准备产生n - 1个数,其值的分子恰好是左右两个数的分子的和、分母是左右两个数的分母的和。
例如,2 / 3,而它的2就是左边1 / 2的1和右边1 / 1的分子1相加的结果;而2 / 3的3,则是1 / 2的2加上1 / 1的分母1而得。
从这棵树中,我们可以看出,每个正的最简分数在这棵树中恰好出现一次,我们用字母“L”和“R”分别表示从树根(1 / 1)开始的一步“往左走”和“往右走”,则每一个数都可以由L和R组成的序列表示。
例如,LRRL表示从1 / 1开始往左走一步到1 / 2,然后往右走到2 / 3,再往右走到3 / 4,最后往左走到5 / 7。我们可以把LRRL看作5 / 7的一种表示法。几乎每个正分数均有唯一的方法表示成一个由L和R组成的序列。
给定一个分数,输出它的LR表示法。
首先,他们在第一列放两个“分数”,第一个是0 / 1,代表0;第二个是1 / 0,代表无穷大。接着他们一列一列地产生这棵树,当他们要产生第k+1列的时候,就先把前k列所有的分数按照大小排成一列(假设有n个),在这些数之间会有n - 1个间隔,那么第k + 1列就准备产生n - 1个数,其值的分子恰好是左右两个数的分子的和、分母是左右两个数的分母的和。
例如,2 / 3,而它的2就是左边1 / 2的1和右边1 / 1的分子1相加的结果;而2 / 3的3,则是1 / 2的2加上1 / 1的分母1而得。
从这棵树中,我们可以看出,每个正的最简分数在这棵树中恰好出现一次,我们用字母“L”和“R”分别表示从树根(1 / 1)开始的一步“往左走”和“往右走”,则每一个数都可以由L和R组成的序列表示。
例如,LRRL表示从1 / 1开始往左走一步到1 / 2,然后往右走到2 / 3,再往右走到3 / 4,最后往左走到5 / 7。我们可以把LRRL看作5 / 7的一种表示法。几乎每个正分数均有唯一的方法表示成一个由L和R组成的序列。
给定一个分数,输出它的LR表示法。
输入
输入有两个互素的正整数m和n(1 ≤ n,m ≤1000)。
输出
输出对应的LR表示法。
样例输入 Copy
5 7
样例输出 Copy
LRRL
#pragma GCC optimize(2) #include<cstdio> #include<iostream> #include<algorithm> #include<map> #include <math.h> #include<bits/stdc++.h> using namespace std; typedef long long ll; inline int read() { int x=0,f=1;char ch=getchar(); while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();} while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();} return x*f; } const int INF=0x3f3f3f3f; const int maxn=1e6+100; int n,m; int a,d; int b,c; void inint(){ cin>>n>>m; a=d=0; b=c=1; } int main(){ inint(); if(n==m){ return 0; } while(1){ if(n*(b+d)==m*(a+c)){ return 0; } else if(n*(b+d)>m*(a+c)){ printf("R"); a=a+c; b=b+d; } else if(n*(b+d)<m*(a+c)){ printf("L"); c=a+c; d=b+d; } } }