It's easy for ACMer to calculate A^X mod P. Now given seven integers n, A, K, a, b, m, P, and a function f(x) which defined as following.
f(x) = K, x = 1
f(x) = (a*f(x-1) + b)%m , x > 1
Now, Your task is to calculate
( A^(f(1)) + A^(f(2)) + A^(f(3)) + ...... + A^(f(n)) ) modular P.
输入
In the first line there is an integer T (1 < T <= 40), which indicates the number of test cases, and then T test cases follow. A test case contains seven integers n, A, K, a, b, m, P in one line.
1 <= n <= 10^6
0 <= A, K, a, b <= 10^9
1 <= m, P <= 10^9
输出
For each case, the output format is “Case #c: ans”.
c is the case number start from 1.
ans is the answer of this problem.
样例输入 Copy
2 3 2 1 1 1 100 100 3 15 123 2 3 1000 107
样例输出 Copy
Case #1: 14 Case #2: 63
就是预先把A的次幂处理出来
dp1数组构造A^0~A^(10^5),间隔为A。
dp2数组构造A^(10^5)~A^(10^10),间隔为A^(10^5)。
这样对于任意的A^x就能表示成dp2[x/(10^5)]*dp1[x%(10^5)]
从而用空间换取时间。
如果是A的1e4次幂,表示为dp2[0]*dp1[1e4]=dp1[1e4]
如果是A的1e6次幂,表示为dp2[10]*dp1[0]
如果是A的1e6+10次幂,表示为dp2[10]*dp[10]=A的1e6次幂乘A的10次幂,就是A的1e6+10次幂
#include<bits/stdc++.h> using namespace std; typedef long long ll; const int maxn=1e5; ll f1[110011]; ll f2[110011]; ll n,A,k,a,b,m,p; void inint(){ f1[0]=f2[0]=1; f1[1]=A%p; for(int i=2;i<=maxn;i++){ f1[i]=(f1[i-1]*f1[1])%p; } f2[1]=f1[maxn]; for(int i=2;i<=maxn;i++){ f2[i]=(f2[i-1]*f2[1])%p; } } int main(){ int t; cin>>t; for(int case1=1;case1<=t;case1++){ cin>>n>>A>>k>>a>>b>>m>>p; inint(); ll ans=0; ll z=k; for(int i=1;i<=n;i++){ ans=(ans+f2[z/maxn]*f1[z%maxn])%p; z=(a*z+b)%m; } printf("Case #%d: %lld ",case1,ans); } }