zoukankan      html  css  js  c++  java
  • LintCode-Maximum Subarray II

    Given an array of integers, find two non-overlapping subarrays which have the largest sum.

    The number in each subarray should be contiguous.

    Return the largest sum.

    Note

    The subarray should contain at least one number

    Example

    For given [1, 3, -1, 2, -1, 2], the two subarrays are [1, 3] and [2, -1, 2] or [1, 3, -1, 2] and [2], they both have the largest sum 7.

    Challenge

    Can you do it in time complexity O(n) ?

    Analysis:

    We need two non-overlapping subarrays, so there must be some point X so that the maximum subarray before X (not necessarily end at X) + the maximum subarray after X is max.

    So, we first calculate the max subarray end at each point from left to right and from right to left;

    Then, we account the max subarray before and after each point;

    At last, we find out the result.

    Solution:

     1 public class Solution {
     2     /**
     3      * @param nums: A list of integers
     4      * @return: An integer denotes the sum of max two non-overlapping subarrays
     5      */
     6     public int maxTwoSubArrays(ArrayList<Integer> nums) {
     7         if (nums.size()<2) return 0;
     8         int len = nums.size();
     9 
    10         //Calculate the max subarray from left to right and from right to left.
    11         int[] left = new int[len];
    12         left[0] = nums.get(0);
    13         for (int i=1;i<len;i++)
    14             left[i] = Math.max(left[i-1]+nums.get(i), nums.get(i));
    15         int curMax = left[0];
    16         for (int i=1;i<len;i++)
    17             if (left[i]<curMax){
    18                 left[i] = curMax;
    19             } else curMax = left[i];
    20 
    21         int[] right = new int[len];
    22         right[len-1]=nums.get(len-1);
    23         for (int i=len-2;i>=0;i--)
    24             right[i] = Math.max(right[i+1]+nums.get(i),nums.get(i));
    25         curMax = right[len-1];
    26         for (int i=len-2;i>=0;i--)
    27             if (right[i]<curMax) right[i] = curMax;
    28             else curMax = right[i];
    29 
    30         //Find out the result.
    31         int res = Integer.MIN_VALUE;
    32         for (int i=0;i<len-1;i++)
    33             if (left[i]+right[i+1]>res)
    34                 res = left[i]+right[i+1];
    35         return res;
    36     }
    37 }
  • 相关阅读:
    元类,单例模式
    面向对象高阶
    类的三大特性---封装以及Property特性
    c# 中的string(神奇的string)
    c#中的equal和getHashCode
    linq中的Distinct的使用(附带IComparable和IComparer的复习和使用)
    flex布局完整示例
    flex布局中flex-basis的理解
    CSS两端对齐的效果;
    理解c#中扩展性代码
  • 原文地址:https://www.cnblogs.com/lishiblog/p/4183818.html
Copyright © 2011-2022 走看看