zoukankan      html  css  js  c++  java
  • LintCode-Topological Sorting

    Given an directed graph, a topological order of the graph nodes is defined as follow:

    • For each directed edge A-->B in graph, A must before B in the order list.
    • The first node in the order can be any node in the graph with no nodes direct to it.
    Find any topological order for the given graph.
    Note
    You can assume that there is at least one topological order in the graph.
    Example

    For graph as follow: 

    The topological order can be:

    [0, 1, 2, 3, 4, 5]

    or

    [0, 2, 3, 1, 5, 4]

    or

    ....

    Challenge

    Can you do it in both BFS and DFS?

    Analysis:

    A basica method is recording the pre nodes of every node, then find out a node without pre node in each iteration and delete this node from unvisited set.

    DFS: use a recursive method, randomly pick up an unmakred node, before adding it into result list, recursively visite all its neighbors and add its neighbors into list first. In this way, we guarantee that all the nodes belong to some node's post nodes will be added to the result list first.

    Solution 1:

     1 /**
     2  * Definition for Directed graph.
     3  * class DirectedGraphNode {
     4  *     int label;
     5  *     ArrayList<DirectedGraphNode> neighbors;
     6  *     DirectedGraphNode(int x) { label = x; neighbors = new ArrayList<DirectedGraphNode>(); }
     7  * };
     8  */
     9 public class Solution {
    10     /**
    11      * @param graph: A list of Directed graph node
    12      * @return: Any topological order for the given graph.
    13      */    
    14     public ArrayList<DirectedGraphNode> topSort(ArrayList<DirectedGraphNode> graph) {
    15         ArrayList<DirectedGraphNode> res = new ArrayList<DirectedGraphNode>();
    16         if (graph.size()==0) return res;
    17 
    18         //Construct hash map.
    19         Map<DirectedGraphNode, Set<DirectedGraphNode>> map = new HashMap<DirectedGraphNode, Set<DirectedGraphNode>>();
    20         for (DirectedGraphNode node: graph){
    21             Set<DirectedGraphNode> set = new HashSet<DirectedGraphNode>();
    22             map.put(node,set);
    23         }
    24         for (DirectedGraphNode node : graph)
    25             for (DirectedGraphNode temp: node.neighbors)
    26                 map.get(temp).add(node);                
    27 
    28         //Construct topological order sequence.
    29         int len = graph.size();
    30         while (graph.size()>0) {
    31             int index = 0;
    32             while (index<graph.size()){
    33                 DirectedGraphNode node = graph.get(index);
    34                 if (map.get(node).size()==0){
    35                     graph.remove(node);
    36                     res.add(node);
    37                     for (DirectedGraphNode temp: graph)
    38                         if (map.get(temp).contains(node))
    39                             map.get(temp).remove(node);
    40                 } else index++;
    41             }
    42         }
    43         return res;
    44     
    45     
    46         
    47 
    48     }
    49 }

    Solution 2 (DFS):

     1 /**
     2  * Definition for Directed graph.
     3  * class DirectedGraphNode {
     4  *     int label;
     5  *     ArrayList<DirectedGraphNode> neighbors;
     6  *     DirectedGraphNode(int x) { label = x; neighbors = new ArrayList<DirectedGraphNode>(); }
     7  * };
     8  */
     9 public class Solution {
    10     /**
    11      * @param graph: A list of Directed graph node
    12      * @return: Any topological order for the given graph.
    13      */    
    14     public ArrayList<DirectedGraphNode> topSort(ArrayList<DirectedGraphNode> graph) {
    15         ArrayList<DirectedGraphNode> res = new ArrayList<DirectedGraphNode>();
    16         if (graph.size()==0) return res;
    17         Map<DirectedGraphNode,Integer> status = new HashMap<DirectedGraphNode,Integer>();
    18         for (DirectedGraphNode node: graph)
    19             status.put(node,0);
    20 
    21         while (hasUnsorted(status,graph)){
    22             DirectedGraphNode node = null;
    23             for (DirectedGraphNode temp : graph)
    24                 if (status.get(temp)==0) node = temp;
    25             search(status, graph, res, node);
    26         }
    27 
    28         return res;
    29             
    30     }
    31 
    32     public boolean hasUnsorted(Map<DirectedGraphNode,Integer> status, ArrayList<DirectedGraphNode> graph){
    33         for (DirectedGraphNode node : graph)
    34             if (status.get(node)==0) return true;
    35 
    36         return false;
    37     }
    38 
    39     public void search(Map<DirectedGraphNode,Integer> status, ArrayList<DirectedGraphNode> graph, ArrayList<DirectedGraphNode> res, DirectedGraphNode node){
    40         if (status.get(node)==1) System.out.println("It is not a DAG");
    41         if (status.get(node)==2) return;
    42         status.put(node,1);
    43         for (DirectedGraphNode next : node.neighbors)
    44             search(status,graph,res,next);
    45         status.put(node,2);
    46         res.add(0,node);
    47     }
    48         
    49 }
  • 相关阅读:
    刷题向》关于一道比较优秀的递推型DP(openjudge9275)(EASY+)
    刷题向》一道简单的思路题BZOJ1800(EASY+)
    算法描述》关于二分的两三事
    值得一做》关于一道暴搜BZOJ1024(EASY+)
    写一个C语言的链表记录一下
    qt 创建第一个工程
    windows好用的便签
    .pro文件部分命令详解
    QT 子文件的建立(pri)
    QTAction Editor的简单使用(简洁明了)
  • 原文地址:https://www.cnblogs.com/lishiblog/p/4187867.html
Copyright © 2011-2022 走看看