zoukankan      html  css  js  c++  java
  • BZOJ 2186 沙拉公主的困惑(预处理逆元+欧拉函数)

    题意:求1-n!里与m!互质的数有多少?(m<=n<=1e6).

    因为n!%m!=0,所以题目实际上求的是phi(m!)*n!/m!.

    预处理出这些素数的逆元和阶乘的模即可。

    # include <cstdio>
    # include <cstring>
    # include <cstdlib>
    # include <iostream>
    # include <vector>
    # include <queue>
    # include <stack>
    # include <map>
    # include <bitset>
    # include <set>
    # include <cmath>
    # include <algorithm>
    using namespace std;
    # define lowbit(x) ((x)&(-x))
    # define pi acos(-1.0)
    # define eps 1e-8
    # define MOD 30031
    # define INF 1000000000
    # define mem(a,b) memset(a,b,sizeof(a))
    # define FOR(i,a,n) for(int i=a; i<=n; ++i)
    # define FO(i,a,n) for(int i=a; i<n; ++i)
    # define bug puts("H");
    # define lch p<<1,l,mid
    # define rch p<<1|1,mid+1,r
    # define mp make_pair
    # define pb push_back
    typedef pair<int,int> PII;
    typedef vector<int> VI;
    # pragma comment(linker, "/STACK:1024000000,1024000000")
    typedef long long LL;
    int Scan() {
        int x=0,f=1;char ch=getchar();
        while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
        while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
        return x*f;
    }
    const int N=10000005;
    //Code begin...
    
    int fac[N], pri[N], inv[N], ans[N];
    bool vis[N];
    int P, tot;
    void init(int n)
    {
        fac[1]=1;
        FOR(i,2,n) fac[i]=(LL)fac[i-1]*i%P;
        inv[1]=1;
        FOR(i,2,n){
            if(!vis[i])pri[++tot]=i;
            for(int j=1; pri[j]*i<=n&&j<=tot; ++j){
                vis[pri[j]*i]=1;
                if(i%pri[j]==0) break;
            }
        }
        for(int i=2; i<=n&&i<P; ++i) inv[i]=(P-(LL)P/i*inv[P%i]%P);
        ans[1]=1;
        FOR(i,2,n) {
            ans[i]=ans[i-1];
            if(!vis[i])ans[i]=(LL)ans[i]*(i-1)%P*inv[i%P]%P;
        }
    }
    int main()
    {
        int T, n, m; scanf("%d%d",&T,&P); init(N-5);
        while(T--){
            scanf("%d%d",&n,&m);
            printf("%d
    ",(LL)fac[n]*ans[m]%P);
        }
        return 0;
    }
    View Code
  • 相关阅读:
    jdk和jre有什么区别?
    Apache的作用及意义
    博客园新成员的第一天
    重构改善既有代码的设计--简化条件表达式
    SourceMonitor: 代码重构的小工具,大用场
    使用Eclipse中提供的Refactor(重构)工具
    极大提高Web开发效率的8个工具和建议(含教程)
    Hbase shell命令
    Java多线程-新特性-有返回值的线程
    Java多线程-新特征-条件变量
  • 原文地址:https://www.cnblogs.com/lishiyao/p/6884467.html
Copyright © 2011-2022 走看看