这题的大意是有C只牛,K台机器,C只牛与K台机器的距离是已知的,现在还知道,K台机器的最多能容下M只牛,现在问说如何安排这些牛到这些机器上,使得符合上述的限制,同时要使牛与机器的最远距离最小。具体的做法是二分答案,然后用二分匹配来判可行,可以修改下匈牙利匹配,也可以拆点后用直接的二分匹配,或者用复杂度高点的最大流。
代码
#include <iostream>
#include <string>
using namespace std;
const int MAXK = 35;
const int MAXC = 205;
const int MAXM = 20;
const int INF = 1000000;
int K, C, M;
int n, m;
int mm[MAXK + MAXC][MAXK + MAXC];
bool d[MAXC][MAXK * MAXM];
int s[MAXK * MAXM];
int clo[MAXK * MAXM];
void floyd()
{
for(int k = 0; k < C + K; k++)
{
for(int i = 0; i < C + K; i++)
{
for(int j = 0; j < C + K; j++)
{
if(mm[i][k] + mm[k][j] < mm[i][j])
mm[i][j] = mm[i][k] + mm[k][j];
}
}
}
}
void make_map(int limit)
{
for(int i = 0; i < C; i++)
{
for(int j = 0; j < K; j++)
{
if(mm[K + i][j] <= limit) d[i][j] = true;
else d[i][j] = false;
for(int k = 0; k < M; k++)
{
d[i][j + k * K] = d[i][j];
}
}
}
}
bool dfs(int i)
{
for(int j = 0; j < m; j++)
{
if(d[i][j] && s[j] == 0)
{
s[j] = 1;
if(clo[j] == -1 || dfs(clo[j]))
{
clo[j] = i;
return true;
}
}
}
return false;
}
bool can(int limit)
{
make_map(limit);
memset(clo, -1, sizeof(clo));
for(int i = 0; i < n; i++)
{
memset(s, 0, sizeof(s));
if(!dfs(i)) return false;
}
return true;
}
int go()
{
n = C;
m = M * K;
floyd();
int low = 1, high = 20000;
while(low <= high)
{
int mid = (low + high) / 2;
if(can(mid)) high = mid - 1;
else low = mid + 1;
}
return low;
}
int main()
{
while(scanf("%d%d%d", &K, &C, &M) != EOF)
{
for(int i = 0; i < K + C; i++)
{
for(int j = 0; j < K + C; j++)
{
scanf("%d", &mm[i][j]);
if(mm[i][j] == 0) mm[i][j] = INF;
}
}
printf("%d\n", go());
}
}