Question:
Follow up for "Unique Paths":
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1
and 0
respectively in the grid.
For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
[ [0,0,0], [0,1,0], [0,0,0] ]
The total number of unique paths is 2
.
Note: m and n will be at most 100.
Analysis:
根据“Unique Paths”题目:
现在想象假设在grid中存在一些障碍,那么应该会有几条不同的路径呢?
1表示此处是障碍,不能走;0表示此处可以行走。
思路:根据前面两个题目的经验,仍然使用动态规划,额外申请一块空间,当此处在原网格中是1,表示此处走不通,,所以前面累计的路径个数清零。注意一些特殊情况,如start位置或finish位置为1则一定没有路径。
Answer:
public class Solution { public int uniquePathsWithObstacles(int[][] obstacleGrid) { if(obstacleGrid == null || obstacleGrid.length == 0 || obstacleGrid[0][0] == 1 || obstacleGrid[obstacleGrid.length-1][obstacleGrid[0].length-1] == 1) return 0; if(obstacleGrid.length == 1 || obstacleGrid[0].length == 1) return 1; int m = obstacleGrid.length, n = obstacleGrid[0].length; int[][] dp = new int[m][n]; dp[0][0] = 1; for(int i=0; i<m; i++) { for(int j=0; j<n; j++) { if(i == 0 && j == 0) continue; else if(i == 0 && j != 0) { if(obstacleGrid[i][j] ==1) dp[i][j] = 0; else dp[i][j] = dp[i][j-1]; } else if(i != 0 && j == 0) { if(obstacleGrid[i][j] ==1) dp[i][j] = 0; else dp[i][j] = dp[i-1][j]; } else { if(obstacleGrid[i][j] ==1) dp[i][j] = 0; else dp[i][j] = dp[i-1][j] + dp[i][j-1]; } } } return dp[m-1][n-1]; } }