zoukankan      html  css  js  c++  java
  • something about Parameter Estimation (参数估计)

    点估计 Point Estimation

    • 最大似然估计(Maximum Likelihood Estimate —— MLE):视θ为固定的参数,假设存在一个最佳的参数(或参数的真实值是存在的),目的是找到这个值。
      • θ = argmax l(θ) 
    • 最大后验估计(Maximum a Posteriori Estimate —— MAP):视θ为一个随机变量,存在分布p(θ),将其先验分布带入,但仍然假设存在最优的参数。
      • θ = argmax l(θ)*p(θ) (即假设θ也是随机变量,存在着先验分布)
    • MLE与MAP的关系:当我们对θ的分布完全未知时,MLE等价于MAP
    • 参数估计的一致性Conference指:随着样本容量的增大收敛到参数真值的估计量;
    • 参数估计的无偏性unbiased指:估计量的期望与被估计量的真值相等。

    贝叶斯估计 Bayesian Estimation

     与点估计不同的是,在贝叶斯观点中,θ是一个分布/随机变量,所以估计应该是一个分布,而不是一个值(点)!

    p(θ|D)是贝叶斯参数估计的输出,是一个完整的分布,而不是一个点。

     非参数估计 Non parameter estimation

    常用的参数估计的形式基本都是单模的(Single Modal),不足以描述复杂的数据分布,应该以训练数据自身来估计分布。

  • 相关阅读:
    MySQL 命令(一)
    HTML5 表单新增元素与属性
    怎样用SQL修改某个字段的部分内容
    百度sitemap.xml
    Dedecms自定义表单后台列表展现方式样式更改
    织梦seo
    织梦DedeCMS自定义表单diy_list.htm
    织梦采集文章
    播放视频插件swfobject.js与Video Html5
    织梦简单的自定义表单字段
  • 原文地址:https://www.cnblogs.com/little-YTMM/p/5303591.html
Copyright © 2011-2022 走看看