zoukankan      html  css  js  c++  java
  • LFM矩阵分解,java实现

    关于LFM分解理论和python实现见https://www.cnblogs.com/little-horse/p/12489619.html。

    以下是java简单实现,完整程序见https://github.com/jiangnanboy/RecomSys/blob/master/src/main/java/com/sy/zhihai/model/LFM.java,数据https://github.com/jiangnanboy/RecomSys/tree/master/src/main/resources

    import java.util.Map.Entry;
    import java.util.Scanner;
    
    import javolution.util.FastMap;
    import javolution.util.FastList;
    
    /**
     * LFM(latent factor model)隐语义推荐模型,矩阵分解,训练得到U,I矩阵
     * 对user-item评分矩阵进行分解为U、I矩阵,再利用随机梯度下降(函数值下降最快的方向)迭代求解出U,I矩阵,最后用U*I预测得出user对item的预测评分
     * 这里U矩阵是user对每个隐因子的偏好程度,I矩阵是item在每个隐因子中的分布
     **/
    public class LFM extends AbsMF {
    
        public LFM() {
        }
    
        public static void main(String[] args) {
            String dataPath = "resultData.txt";
            LFM lfm = new LFM();
            lfm.loadData(dataPath);
            lfm.initParam(30, 0.02, 0.01, 50);
            lfm.train();
    
            System.out.println("Input userID...");
            Scanner in = new Scanner(System.in);
            while (true) {
                String userID = in.nextLine();
                FastList<RecommendedItem> recommendedItems = lfm.calRecSingleUser(userID, 50);
                lfm.displayRecoItem(userID, recommendedItems);
                System.out.println("Input userID...");
            }
        }
    
    
        /**
         * 初始化F,α,λ,max_iter,U,I
         *
         * @param F        隐因子数目
         * @param α        学习速率
         * @param λ        正则化参数,以防过拟合
         * @param max_iter 迭代次数
         */
        @Override
        public void initParam(int F, double α, double λ, int max_iter) {
            System.out.println("init... " + "F= " + F + "; " + "α= " + α + "; " + "λ= " + λ + "; " + "max_iter= " + max_iter + ";");
            this.F = F;
            this.α = α;
            this.λ = λ;
            this.max_iter = max_iter;
            this.U = new FastMap<String, Double[]>();
            this.I = new FastMap<String, Double[]>();
    
            String userID = null;
            Double[] randomUValue = null;
            Double[] randomIValue = null;
            //对U,I矩阵随机初始化
            for (Entry<String, FastMap<String, Double>> entry : ratingData.entrySet()) {
                userID = entry.getKey();
                randomUValue = new Double[F];
                for (int i = 0; i < F; i++) {
                    double rand = Math.random() / Math.sqrt(F);//随机数填充初始化矩阵,并和1/sqrt(F)成正比
                    randomUValue[i] = rand;
                }
                U.put(userID, randomUValue);
                for (String itemID : entry.getValue().keySet()) {
                    if (I.containsKey(itemID))
                        continue;
                    randomIValue = new Double[F];
                    for (int i = 0; i < F; i++) {
                        double rand = Math.random() / Math.sqrt(F);
                        randomIValue[i] = rand;
                    }
                    I.put(itemID, randomIValue);
                }
            }
        }
    
        /**
         * 随机梯度下降训练U,I矩阵
         */
        @Override
        public void train() {
            System.out.println("training U,I...");
            for (int step = 0; step < this.max_iter; step++) {
                System.out.println("第" + (step + 1) + "次迭代...");
                for (Entry<String, FastMap<String, Double>> entry : this.ratingData.entrySet()) {
                    String userID = entry.getKey();
                    for (Entry<String, Double> entry1 : entry.getValue().entrySet()) {
                        String itemID = entry1.getKey();
                        double pui = this.predictRating(userID, itemID);
                        double err = entry1.getValue() - pui;//根据当前参数计算误差
                        Double[] userValue = this.U.get(userID);
                        Double[] itemValue = this.I.get(itemID);
                        for (int i = 0; i < this.F; i++) {
                            double us = userValue[i];
                            double it = itemValue[i];
                            us += this.α * (err * it - this.λ * us);//后一项是来防止过拟合的正则化项,λ需要根据具体应用场景反复实验得到。损失函数的优化使用随机梯度下降算法
                            it += this.α * (err * us - this.λ * it);
                            userValue[i] = us;
                            itemValue[i] = it;
                        }
                    }
                }
                this.α *= 0.9;//每次迭代步长要逐步缩小
            }
        }
    
        /**
         * userID对itemID的评分
         * U每行表示该用户对各个隐因子的偏好程度
         * I每列表示该物品在各个隐患因子中的概率分布
         * rating=P*Q
         *
         * @param userID
         * @param itemID
         * @return
         */
        @Override
        public double predictRating(String userID, String itemID) {
            double p = 0.0;
            Double[] userValue = this.U.get(userID);
            Double[] itemValue = this.I.get(itemID);
            for (int i = 0; i < this.F; i++) {
                p += userValue[i] * itemValue[i];
            }
            return p;
        }
    
    }
  • 相关阅读:
    Search Insert Position
    Substring with Concatenation of All Words
    Swap Nodes in Pairs
    Remove Element
    Remove Duplicates from Sorted Array
    Letter Combinations of a Phone Number
    Remove Nth Node From End of List
    Valid Parentheses
    Merge k Sorted Lists
    Using an Interface as a Type
  • 原文地址:https://www.cnblogs.com/little-horse/p/12623223.html
Copyright © 2011-2022 走看看