zoukankan      html  css  js  c++  java
  • opencv学习之路(34)、SIFT特征匹配(二)

    一、特征匹配简介

    二、暴力匹配

    1.nth_element筛选

    #include "opencv2/opencv.hpp"
    #include <opencv2/nonfree/nonfree.hpp>//SIFT
    #include <opencv2/legacy/legacy.hpp>//BFMatch暴力匹配
    #include <vector>
    #include<iostream>
    using namespace std;
    using namespace cv;
    
    void main()
    {     
        Mat srcImg1 = imread("E://11.jpg");
        Mat srcImg2 = imread("E://22.jpg");
        //定义SIFT特征检测类对象
        SiftFeatureDetector siftDetector;
        //定义KeyPoint变量
        vector<KeyPoint>keyPoints1;
        vector<KeyPoint>keyPoints2;
        //特征点检测
        siftDetector.detect(srcImg1, keyPoints1);
        siftDetector.detect(srcImg2, keyPoints2);
        //绘制特征点(关键点)
        Mat feature_pic1, feature_pic2;
        drawKeypoints(srcImg1, keyPoints1, feature_pic1, Scalar::all(-1));
        drawKeypoints(srcImg2, keyPoints2, feature_pic2, Scalar::all(-1));
        //显示原图
        //imshow("src1", srcImg1);
        //imshow("src2", srcImg2);
        //显示结果
        imshow("feature1", feature_pic1);
        imshow("feature2", feature_pic2);
    
        //计算特征点描述符 / 特征向量提取
        SiftDescriptorExtractor descriptor;
        Mat description1;
        descriptor.compute(srcImg1, keyPoints1, description1);
        Mat description2;
        descriptor.compute(srcImg2, keyPoints2, description2);
        cout<<description1.cols<<endl;
        cout<<description1.rows<<endl;
    
        //进行BFMatch暴力匹配
        BruteForceMatcher<L2<float>>matcher;    //实例化暴力匹配器
        vector<DMatch>matches;   //定义匹配结果变量
        matcher.match(description1, description2, matches);  //实现描述符之间的匹配
    
        //匹配结果筛选
        nth_element(matches.begin(), matches.begin()+29, matches.end());   //提取出前30个最佳匹配结果     
        matches.erase(matches.begin()+30, matches.end());    //剔除掉其余的匹配结果
    
        Mat result;
        drawMatches(srcImg1, keyPoints1, srcImg2, keyPoints2, matches, result,  Scalar(0, 255, 0), Scalar::all(-1));//匹配特征点绿色,单一特征点颜色随机
        imshow("Match_Result", result);
        
        waitKey(0);
    }

    没有进行筛选时

    进行筛选后

    2.计算向量距离进行筛选(比第一种筛选方式好)

    前面代码相同
        //进行BFMatch暴力匹配
        BruteForceMatcher<L2<float>>matcher;    //实例化暴力匹配器
        vector<DMatch>matches;   //定义匹配结果变量
        matcher.match(description1, description2, matches);  //实现描述符之间的匹配
    
        //计算向量距离的最大值与最小值:距离越小越匹配
        double max_dist=matches[0].distance,min_dist=matches[0].distance;
        for(int i=1; i<description1.rows; i++)
        {
            if(matches.at(i).distance > max_dist)
                max_dist = matches[i].distance;
            if(matches.at(i).distance < min_dist)
                min_dist = matches[i].distance;
        }
        cout<<"min_distance="<<min_dist<<endl;
        cout<<"max_distance="<<max_dist<<endl;
        //匹配结果删选    
        vector<DMatch>good_matches;
        for(int i=0; i<matches.size(); i++)
        {
            if(matches[i].distance < 2*min_dist)
                good_matches.push_back(matches[i]);
        }
    
        Mat result;
        drawMatches(srcImg1, keyPoints1, srcImg2, keyPoints2, good_matches, result,  Scalar(0, 255, 0), Scalar::all(-1));//匹配特征点绿色,单一特征点颜色随机
        imshow("Match_Result", result);
  • 相关阅读:
    常用的逻辑控制器。
    map集合迭代。
    [译]如何在.NET Core中使用System.Drawing?
    使用.Net Core 2.1开发Captcha图片验证码服务
    ife 零基础学院 day 2
    ife 零基础学院 day 1
    Visual Studio 2017
    Visual Studio 2017
    在Windows 10上利用seafile搭建个人云服务
    Web网站配置Gzip,压缩js css文件
  • 原文地址:https://www.cnblogs.com/little-monkey/p/7634303.html
Copyright © 2011-2022 走看看