zoukankan      html  css  js  c++  java
  • 20210629模拟

    感觉今天的题解是大工程

    T1

    这道题的40分我觉的还是很好理解的,100分可能我自己理解的也不是很到位把,就是大致讲一下

    40pts:

    先定义几个状态:

    f[i][j]表示恰好有i个人喜欢假钞j的概率

    h[i][j][k]表示前i个人恰好有j个人喜欢假钞k的概率

    g[i][j]表示第i种假钞一共选了j个,这种假钞的期望拿走个数

    dp[i][j]表示前i种假钞一共选了j个的期望拿走个数

    转移方程:

    h[i][j][k] = h[i-1][j][k]( imes)(1-p[i][k])+h[i-1][j-1][k]*p[i][k];

    这个就比较显然吧,第i个人喜欢或不喜欢的概率,f[i][j] = h[n][i][j]

    g[i][j] = min(j,k)( imes)f[i][k] ((0leq kleq m))

    其实分为两部分,如果喜欢i的人少于j个,那么就取k,否则取j,乘上对应的概率就好

    dp[i][j] = min(dp[i-1][j-k]+g[i][k])

    一个简单背包

    100pts:

    g[i][j]-g[i][j-1] = (sumlimits_{kleq kleq n} f[i][k])这个地方题解好像打错了,我自己是推出来这个

    不难发现他是非负且单调不升的,也就是说第i种假钞,选x+1个比选x个收益大,但是从x+1到选x+2个没有从x个到选x+1个增量大

    所以我们每次可以贪心的选取增量最大的那个假钞,这里思路都是很明白的,那么代码怎么写呢?这也是我纠结了很久的地方

    先看这部分

    	rep(i, m)
    	{
    		dp[i][0] = 1;
    		rep(j, n) dp[i][j] = dp[i][j - 1] * (1 - p[i][j]);
    		dev[i] = 1 - dp[i][n];
    	}
    

    这里是在干嘛呢??对于第一次的g的差量,为(sumlimits_{1leq kleq n} f[i][k]),就是有1,2,3,一直到n个人喜欢这个假钞

    正难则反,我们求出都不喜欢的概率,然后用1去减就好了

    然后每次我们都相当于去掉了恰好1个喜欢,恰好两个喜欢,恰好三个喜欢……,这部分的代码:

    	rep(t, n)
    	{
    		int x = 1;
    		rep(i, m) if (dev[x] < dev[i]) x = i;
    		ans += dev[x];
    		rep(j, n) rec[j] = dp[x][j];
    		rec[0] = dp[x][0]; dp[x][0] = 0;
    		rep(j, n) dp[x][j] = dp[x][j - 1] * (1 - p[x][j]) + rec[j - 1] * p[x][j];
    		dev[x] -= dp[x][n];
    	}
    

    当前的dp比上一次的喜欢人数多1,rec和上一次的喜欢人数一样,强制让当前这个人喜欢或不喜欢他

    在说的清楚点是什么呢,每次转移,如果现在已经多喜欢了一个人,当前人就不能喜欢了也就是dp[x][j-1]( imes)(1-p[x][j]),如果还没有多喜欢,我就让他喜欢,rec[j-1]( imes)p[x][j]

    这样我dp就可以表示出每次的差量,差量在不断累加,最后就是我该选的数量对应的贡献

    发现我讲讲就讲明白了哎,我觉的这份代码是最简洁,而且我应该是把代码思路阐述的最好的一个了吧,反正其他的我都没看懂……

    T2

    问题可以转化成每次选出一个点,然后把他所在的联通块里的点都捶一边,求每个点被捶的期望次数之和

    可以考虑一个点会在其他点被选中时的期望被捶次数,可以被捶到当且仅当两点联通

    也就是说,其他点不管,被选中的点j一定是两点路径上的点第一个被删除的,概率为1/点数(强制两点间的点都没选)

    我应该是(O(n^2log))的,暴力判断两两点之间的点数,不知道st表O(1)查询lca会怎么样

    还有个(O(n^2))可以对每个点dfs一次,和某种换根感觉差不多,求路径的逆元和呗,第三题给我写麻了,不然应该60的

    T3

    感觉不是难,也不是难写,也不知道为什么代码这么长,而且luogu上交还T

    两个炮台可以来回转化,但是非a即b,我们是不是就可以联想到2-SAT问题?

    这样我们对于每个炮台,暴力dfs判断横向和纵向是否合法,如果都不合法就IMPOSSIBLE

    对于合法的方向,我们把这个炮台塞到用他能表示的点所属的炮台集合中(集合里的炮台横向发射或纵向发射可以到达该点)

    我们容易证明对于每个点,最多只有两个炮台能到达他,为什么呢??

    如果有多个,证明一定有两个炮台同为横向或者纵向,按照光路可逆!证明他们俩一定会互相打到,不合法

    最后如果每个点都被覆盖到,跑2-SAT,否则不合法

    Day2

    T1

    T1真的是NOI模拟么?人均切的一道题

    设dp[i][j]表示前i个蒲公英,时间为t,能的得到的最高魔法值,转移的是时候需要满足转移前的魔法值大于所需魔法值

    但是前两个样例都很水,所以有个小tips,如果之前有个魔法值大的点不能满足,但是取过一些蒲公英后满足了,这个点就被我们忽视掉了

    所以我们按照魔法值拍个序就好了,再就是输出方案了,我还卡了一段时间,不过还算比较简单吧

    T2

    暴力怎么做?

    把每一次轮换都加到Trie树上,然后在Trie树上dp

    优化:直接建后缀树,在后缀树上Dp,其中压在一个节点上的链可以快速处理转移

  • 相关阅读:
    Maven 项目管理工具基础入门系列(二)
    Python OJ 从入门到入门基础练习 10 题
    Maven 项目管理工具基础知识系列(一)
    Markdown 编辑器使用指南
    解决:GitHub 远程端添加了 README.md 文件后,本地 push 代码时出现错误
    CentOS7.4搭建基于用户认证的MongoDB4.0三节点副本集集群详细文档
    Redhat 6.7 x64升级SSH到OpenSSH_7.4p1完整文档
    RHEL6.7 x64双节点安装Oracle 11g R2 RAC
    局域网下通过代理实现服务器的互联网访问
    RedHat 6.7 Enterprise x64环境下使用RHCS部署Oracle 11g R2双机双实例HA
  • 原文地址:https://www.cnblogs.com/little-uu/p/14950137.html
Copyright © 2011-2022 走看看