zoukankan      html  css  js  c++  java
  • LA2402暴力枚举+计算几何+四边形面积

      1 /*
      2 LA2402:
      3 题意:在矩形中给定横线(竖)之间不交叉的n对线,求被分割的小块的最大面积
      4 读懂题意就可以发现是思路很简单的题目
      5 枚举+几何计算,时间复杂度度不高
      6 熟悉了部分函数的运用
      7 
      8 */
      9 #include <stdio.h>
     10 #include <stdlib.h>
     11 #include <string.h>
     12 #include <math.h>
     13 #include <ctype.h>
     14 #include <string>
     15 #include <iostream>
     16 #include <sstream>
     17 #include <vector>
     18 #include <queue>
     19 #include <stack>
     20 #include <map>
     21 #include <list>
     22 #include <set>
     23 #include <algorithm>
     24 
     25 using namespace std;
     26 
     27 struct Point
     28 {
     29     double x,y;
     30     Point(double x=0,double y=0):x(x),y(y){}
     31     void print()
     32     {
     33         cout<<"("<<x<<","<<y<<")"<<endl;
     34     }
     35 };
     36 
     37 typedef Point Vector;
     38 
     39 Vector operator-(Point A,Point B)//表示A指向B
     40 {
     41     return Vector(A.x-B.x,A.y-B.y);
     42 }
     43 Vector operator*(Vector A,double k)
     44 {
     45     return Vector(A.x*k,A.y*k);
     46 }
     47 Vector operator+(Point A,Point B)//表示A指向B
     48 {
     49     return Vector(B.x+A.x,B.y+A.y);
     50 }
     51 double Cross(Vector A,Vector B) {return A.x*B.y-A.y*B.x;}
     52 double Area(Point A,Point B,Point C)//三角形面积
     53 {
     54     return  fabs(Cross(B-A,C-A))/2;
     55 }
     56 struct Line
     57 {
     58     Point p;
     59     Vector v;
     60     Line(Point p,Vector v):p(p),v(v){}
     61 };
     62 Line Getline(Point A,Point B)//求直线AB
     63 {
     64     Vector u=A-B;
     65     return Line(A,u);
     66 }
     67 Point InterSection(Line L1,Line L2)//求直线交点
     68 {
     69     Vector u=L1.p-L2.p;
     70     double t=Cross(L2.v,u)/Cross(L1.v,L2.v);
     71     return L1.p+L1.v*t;
     72 }
     73 double a[50],b[50],c[50],d[50];
     74 int n;
     75 int main()
     76 {
     77     while(cin>>n)
     78     {
     79         if(!n) break;
     80         for(int i=1;i<=n;i++) cin>>a[i];
     81         for(int i=1;i<=n;i++) cin>>b[i];
     82         for(int i=1;i<=n;i++) cin>>c[i];
     83         for(int i=1;i<=n;i++) cin>>d[i];
     84         a[0]=0;b[0]=0;c[0]=0;d[0]=0;
     85         a[n+1]=1;b[n+1]=1;c[n+1]=1;d[n+1]=1;
     86         double m=-1;
     87         for(int i=0;i<=n;i++)//外层枚举相邻的横线
     88         {
     89             Line L1=Getline(Point(0,c[i]),Point(1,d[i]));
     90             Line L2=Getline(Point(0,c[i+1]),Point(1,d[i+1]));
     91             for(int j=0;j<=n;j++)//内层枚举相邻的竖线
     92             {
     93             Line L3=Getline(Point(a[j],0),Point(b[j],1));//一开始写成i,= =!
     94             Line L4=Getline(Point(a[j+1],0),Point(b[j+1],1));
     95             Point P1=InterSection(L1,L3);
     96             Point P2=InterSection(L1,L4);
     97             Point P3=InterSection(L2,L4);
     98             Point P4=InterSection(L2,L3);
     99             double S=Area(P1,P2,P4)+Area(P2,P3,P4);
    100 //            P1.print();P2.print();P3.print();P4.print();
    101 //            cout<<"A1="<<Area(P1,P2,P4)<<endl;
    102 //            cout<<"A2="<<Area(P2,P3,P4)<<endl;
    103 //            cout<<"S="<<S<<endl;
    104             if (S>m) m=S;
    105             }
    106         }
    107         printf("%.6lf
    ",m);
    108     }
    109     return 0;
    110 }
  • 相关阅读:
    【288】◀▶ 博客园黑色代码主题实现
    【287】◀▶ arcpy 常用类说明
    【286】◀▶ Python 内置函数说明
    LeetCode Insert Interval
    Craking the coding interview 面试题:完美随机洗牌
    遭遇多线程bug (1)
    全情投入是做好工作的基础——Leo鉴书39
    《Java 并发编程实战》读书笔记之二:图文讲述同步的另一个重要功能:内存可见性
    视图控制器
    Chapter 1. OpenGL基础回顾
  • 原文地址:https://www.cnblogs.com/little-w/p/3570204.html
Copyright © 2011-2022 走看看