zoukankan      html  css  js  c++  java
  • 全能现代化高精模板C++

    全能现代化高精模板(C++)

    这里面的class bign就是高精的类,里面有很多重载运算符,还有各种运算函数等等,很全。
    一共200来行,可以把它写成一个头文件,或者塞进你自己的代码里。不用的可以删掉,提高速度。

    #define MAX_L 666666  //最大长度,可以修改
    class bign {
    public:
        int len, s[MAX_L];  //数的长度,记录数组
                            //构造函数
        bign();
        bign(const char *);
        bign(int);
        bool sign;                                      //符号 1正数 0负数
        string toStr() const;                           //转化为字符串,主要是便于输出
        friend istream &operator>>(istream &, bign &);  //重载输入流
        friend ostream &operator<<(ostream &, bign &);  //重载输出流
                                                        //重载复制
        bign operator=(const char *);
        bign operator=(int);
        bign operator=(const string);
        //重载各种比较
        bool operator>(const bign &) const;
        bool operator>=(const bign &) const;
        bool operator<(const bign &) const;
        bool operator<=(const bign &) const;
        bool operator==(const bign &) const;
        bool operator!=(const bign &) const;
        //重载四则运算
        bign operator+(const bign &) const;
        bign operator++();
        bign operator++(int);
        bign operator+=(const bign &);
        bign operator-(const bign &) const;
        bign operator--();
        bign operator--(int);
        bign operator-=(const bign &);
        bign operator*(const bign &)const;
        bign operator*(const int num) const;
        bign operator*=(const bign &);
        bign operator/(const bign &) const;
        bign operator/=(const bign &);
        //四则运算的衍生运算
        bign operator%(const bign &) const;  //取模(余数)
        bign factorial() const;              //阶乘
        bign Sqrt() const;                   //整数开根(向下取整)
        bign pow(const bign &) const;        //次方
                                             //一些乱乱的函数
        void clean();
        ~bign();
    };
    #define max(a, b) a > b ? a : b
    #define min(a, b) a < b ? a : b
    bign::bign() {
        memset(s, 0, sizeof(s));
        len = 1;
        sign = 1;
    }
    bign::bign(const char *num) { *this = num; }
    bign::bign(int num) { *this = num; }
    string bign::toStr() const {
        string res;
        res = "";
        for (int i = 0; i < len; i++) res = (char)(s[i] + '0') + res;
        if (res == "")
            res = "0";
        if (!sign && res != "0")
            res = "-" + res;
        return res;
    }
    istream &operator>>(istream &in, bign &num) {
        string str;
        in >> str;
        num = str;
        return in;
    }
    ostream &operator<<(ostream &out, bign &num) {
        out << num.toStr();
        return out;
    }
    bign bign::operator=(const char *num) {
        memset(s, 0, sizeof(s));
        char a[MAX_L] = "";
        if (num[0] != '-')
            strcpy(a, num);
        else
            for (int i = 1; i < strlen(num); i++) a[i - 1] = num[i];
        sign = !(num[0] == '-');
        len = strlen(a);
        for (int i = 0; i < strlen(a); i++) s[i] = a[len - i - 1] - 48;
        return *this;
    }
    bign bign::operator=(int num) {
        char temp[MAX_L];
        sprintf(temp, "%d", num);
        *this = temp;
        return *this;
    }
    bign bign::operator=(const string num) {
        const char *tmp;
        tmp = num.c_str();
        *this = tmp;
        return *this;
    }
    bool bign::operator<(const bign &num) const {
        if (sign ^ num.sign)
            return num.sign;
        if (len != num.len)
            return len < num.len;
        for (int i = len - 1; i >= 0; i--)
            if (s[i] != num.s[i])
                return sign ? (s[i] < num.s[i]) : (!(s[i] < num.s[i]));
        return !sign;
    }
    bool bign::operator>(const bign &num) const { return num < *this; }
    bool bign::operator<=(const bign &num) const { return !(*this > num); }
    bool bign::operator>=(const bign &num) const { return !(*this < num); }
    bool bign::operator!=(const bign &num) const { return *this > num || *this < num; }
    bool bign::operator==(const bign &num) const { return !(num != *this); }
    bign bign::operator+(const bign &num) const {
        if (sign ^ num.sign) {
            bign tmp = sign ? num : *this;
            tmp.sign = 1;
            return sign ? *this - tmp : num - tmp;
        }
        bign result;
        result.len = 0;
        int temp = 0;
        for (int i = 0; temp || i < (max(len, num.len)); i++) {
            int t = s[i] + num.s[i] + temp;
            result.s[result.len++] = t % 10;
            temp = t / 10;
        }
        result.sign = sign;
        return result;
    }
    bign bign::operator++() {
        *this = *this + 1;
        return *this;
    }
    bign bign::operator++(int) {
        bign old = *this;
        ++(*this);
        return old;
    }
    bign bign::operator+=(const bign &num) {
        *this = *this + num;
        return *this;
    }
    bign bign::operator-(const bign &num) const {
        bign b = num, a = *this;
        if (!num.sign && !sign) {
            b.sign = 1;
            a.sign = 1;
            return b - a;
        }
        if (!b.sign) {
            b.sign = 1;
            return a + b;
        }
        if (!a.sign) {
            a.sign = 1;
            b = bign(0) - (a + b);
            return b;
        }
        if (a < b) {
            bign c = (b - a);
            c.sign = false;
            return c;
        }
        bign result;
        result.len = 0;
        for (int i = 0, g = 0; i < a.len; i++) {
            int x = a.s[i] - g;
            if (i < b.len)
                x -= b.s[i];
            if (x >= 0)
                g = 0;
            else {
                g = 1;
                x += 10;
            }
            result.s[result.len++] = x;
        }
        result.clean();
        return result;
    }
    bign bign::operator*(const bign &num) const {
        bign result;
        result.len = len + num.len;
    
        for (int i = 0; i < len; i++)
            for (int j = 0; j < num.len; j++) result.s[i + j] += s[i] * num.s[j];
    
        for (int i = 0; i < result.len; i++) {
            result.s[i + 1] += result.s[i] / 10;
            result.s[i] %= 10;
        }
        result.clean();
        result.sign = !(sign ^ num.sign);
        return result;
    }
    bign bign::operator*(const int num) const {
        bign x = num;
        bign z = *this;
        return x * z;
    }
    bign bign::operator*=(const bign &num) {
        *this = *this * num;
        return *this;
    }
    bign bign::operator/(const bign &num) const {
        bign ans;
        ans.len = len - num.len + 1;
        if (ans.len < 0) {
            ans.len = 1;
            return ans;
        }
    
        bign divisor = *this, divid = num;
        divisor.sign = divid.sign = 1;
        int k = ans.len - 1;
        int j = len - 1;
        while (k >= 0) {
            while (divisor.s[j] == 0) j--;
            if (k > j)
                k = j;
            char z[MAX_L];
            memset(z, 0, sizeof(z));
            for (int i = j; i >= k; i--) z[j - i] = divisor.s[i] + '0';
            bign dividend = z;
            if (dividend < divid) {
                k--;
                continue;
            }
            int key = 0;
            while (divid * key <= dividend) key++;
            key--;
            ans.s[k] = key;
            bign temp = divid * key;
            for (int i = 0; i < k; i++) temp = temp * 10;
            divisor = divisor - temp;
            k--;
        }
        ans.clean();
        ans.sign = !(sign ^ num.sign);
        return ans;
    }
    bign bign::operator/=(const bign &num) {
        *this = *this / num;
        return *this;
    }
    bign bign::operator%(const bign &num) const {
        bign a = *this, b = num;
        a.sign = b.sign = 1;
        bign result, temp = a / b * b;
        result = a - temp;
        result.sign = sign;
        return result;
    }
    bign bign::pow(const bign &num) const {
        bign result = 1;
        for (bign i = 0; i < num; i++) result = result * (*this);
        return result;
    }
    bign bign::factorial() const {
        bign result = 1;
        for (bign i = 1; i <= *this; i++) result *= i;
        return result;
    }
    void bign::clean() {
        if (len == 0)
            len++;
        while (len > 1 && s[len - 1] == '') len--;
    }
    bign bign::Sqrt() const {
        if (*this < 0)
            return -1;
        if (*this <= 1)
            return *this;
        bign l = 0, r = *this, mid;
        while (r - l > 1) {
            mid = (l + r) / 2;
            if (mid * mid > *this)
                r = mid;
            else
                l = mid;
        }
        return l;
    }
    bign::~bign() {}
    
    inline bign quickmi(ll xx, ll n) {
        bign x = xx, res = 1;
        for (; n; n >>= 1) {
            if (n & 1)
                res *= x;
            x *= x;
        }
        return res;
    }
    
  • 相关阅读:
    codeforces 650B
    2013 ACM区域赛长沙 H zoj 3733 (hdu 4798) Skycity
    2013 ACM区域赛长沙 I LIKE vs CANDLE(ZOJ3734) 很好的一道树形DP
    Codeforces Round #306 (Div. 2)——A——Two Substrings
    Codeforces Round #306 (Div. 2)——B暴力——Preparing Olympiad
    HDU5248——二分查找——序列变换
    HDU2255——KM算法——奔小康赚大钱
    匈牙利算法&KM算法
    HDU1059——多重部分和问题——Dividing
    HDU1058——Humble Numbers
  • 原文地址:https://www.cnblogs.com/littlefrog/p/12200052.html
Copyright © 2011-2022 走看看