zoukankan      html  css  js  c++  java
  • MXNet源码分析 | KVStore进程间通信

    本文主要基于MXNet1.6.0版本进行分析。

    上一篇文章中,我们分析了MXNet中KVStore的进程内通信机制。在这篇文章中,我们主要分析KVStore如何进行多节点分布式通信。

    在KVStore的实现中,KVStoreDistKVStoreDistServer分别对应参数服务器中的worker节点与server节点。KVStoreDist继承自KVStoreLocal,通过封装PS-Lite中的KVWorker实现了PushPull等接口,从而向server发送各类请求;而KVStoreDistServer则封装了PS-Lite中的KVServer,用来处理并响应worker发来的各类请求。

    worker端执行逻辑

    worker创建

    KVStoreDist的构造函数为每个worker节点创建一个ps::KVWorker<char>类型的对象。如果当前worker节点不是一个recovery的节点,那么就阻塞到所有的worker和server启动。

    explicit KVStoreDist(bool use_device_comm)
        : KVStoreLocal(use_device_comm), ps_worker_(nullptr), server_(nullptr) {
      if (IsWorkerNode()) {
        int new_customer_id = GetNewCustomerId();
        ps_worker_ = new ps::KVWorker<char>(0, new_customer_id);
        ps::StartAsync(new_customer_id, "mxnet");
        if (!ps::Postoffice::Get()->is_recovery()) { 
          ps::Postoffice::Get()->Barrier(
            new_customer_id,
            ps::kWorkerGroup + ps::kServerGroup + ps::kScheduler);
        }
      }
      bigarray_bound_ = dmlc::GetEnv("MXNET_KVSTORE_BIGARRAY_BOUND", 1000 * 1000);
      log_verbose_ = dmlc::GetEnv("MXNET_KVSTORE_DIST_ROW_SPARSE_VERBOSE", false);
    }
    

    worker的初始化过程

    在初始化时,每个worker首先检查key的唯一性,随后调用comm_->Init为每个key初始化进行本地通信的资源。本地初始化完成后,worker0把自己本地的权重发送给所有的server。worker0在其push操作完成后,会将数据写入到comm_buf_compr_buf_这两个缓冲区中。

    void InitImpl(const std::vector<int>& keys,
                  const std::vector<NDArray>& values) override {
      CheckUnique(keys);
      for (size_t i = 0; i < keys.size(); ++i) {
        comm_->Init(keys[i], values[i].storage_type(), values[i].shape(), values[i].dtype());
      }
      if (get_rank() == 0 && this->ps_worker_->get_customer()->customer_id() == 0) {
        Push_(keys, values, 0, false);
        // wait until the push is finished
        for (const int key : keys) {
          comm_buf_[key].WaitToWrite();
          compr_buf_[key].WaitToWrite();
        }
      } else {
        // do nothing
      }
      if (!ps::Postoffice::Get()->is_recovery()) {
        Barrier();
      }
    }
    

    worker发送控制消息

    worker端通过SendCommandToServers函数向server端发送控制消息。例如,在KVStoreDist的析构函数中有如下代码,用来从worker0节点向所有server节点发送一个终止的命令。

    if (get_rank() == 0 && ps_worker_->get_customer()->customer_id() == 0) {
       // stop the executor at servers
      SendCommandToServers(static_cast<int>(CommandType::kStopServer), "");
    }
    

    worker发送数据消息

    worker会调用Push_函数向server发送数据请求,它的核心逻辑如下所示(省略部分代码)。与之前提到的本地通信类似,在向server节点发送数据之前,会先调用GroupPairsPush把具有相同key的value汇总到一个vector中。对于每个key,先在本地进行一次Reduce操作聚合所有设备上的梯度,并将结果存放到comm_buf中。随后,通过EncodeDefaultKey把key和value编码成PS-Lite支持的数据结构,再调用PushDefault把对应的数据发送出去。

    void KVStoreDist::Push_(const std::vector<int>& keys,
                            const std::vector<NDArray>& values,
                            int priority,
                            bool do_merge) {
      std::vector<int> uniq_keys;
      std::vector<std::vector<NDArray>> grouped_val;
      GroupKVPairsPush(keys, values, &uniq_keys, &grouped_val, false);
    
      for (size_t i = 0; i < uniq_keys.size(); ++i) {
        int key = uniq_keys[i];
        const auto& vals = grouped_vals[i];
        NDArray merged = do_merge ? comm_->Reduce(key, vals, priority) : vals[0];
    
        auto &comm_buf = comm_buf_[key];
        if (merged.ctx().dev_mask() == cpu::kDevMask) {
          // Start of a push doesn't guarantee that the previous pushes are completed.
          // This shouldn't affect training of networks though because training involves
          // a sequence of push, pull, then push. This imposes ordering that the
          // second push happens after the first pull, and the pull happens after first push.
          comm_buf = merged;  // avoid memory copy
        } else {
          if (comm_buf.is_none()) {
            comm_buf = NDArray(merged.shape(), pinned_ctx_, true, merged.dtype());
          }
          CopyFromTo(merged, &comm_buf);
        }
        const int dtype = merged.dtype();
        const int num_bytes = mshadow::mshadow_sizeof(dtype);
        PSKV& pskv = EncodeDefaultKey(key, comm_buf.shape().Size(), num_bytes);
        PushDefault(key, comm_buf, pskv, priority);
      }
    }
    

    PushDefault会调用ps_worker_->ZPush来完成梯度的发送,梯度发送以及发送之前的一些准备操作都被封装到一个lambda表达式中,这个lambda表达式随后被压入到MXNet后端的依赖引擎中等待执行。

    void PushDefault(int key, const NDArray &send_buf, const PSKV& pskv, int priority) {
      auto push_to_servers =
          [this, key, pskv, send_buf](RunContext rctx, Engine::CallbackOnComplete cb) {
            const int dtype = send_buf.dtype();
            // convert to ps keys
            const size_t size = send_buf.shape().Size() * mshadow::mshadow_sizeof(dtype);
            char* data = static_cast<char *>(send_buf.data().dptr_);
            // do push. false means no delete
            ps::SArray<char> vals(data, size, false);
            int cmd = GetCommandType(RequestType::kDefaultPushPull, dtype);
            CHECK_NOTNULL(ps_worker_)->ZPush(
                pskv.keys, vals, pskv.lens,
                cmd, [cb]() { cb(); });
          };
      Engine::Get()->PushAsync(
          push_to_servers,
          pinned_ctx_,
          {send_buf.var()},
          {},
          FnProperty::kNormal,
          priority,
          "KVStoreDistDefaultPush");
    }
    

    Pull操作的过程如下所示。在准备工作完成后,调用ps_server_->ZPull完成权重的拉取,最后在本地执行Broadcast把从server端拉回的权重广播到所有设备上。

    void PullImpl(const std::vector<int>& keys,
                  const std::vector<NDArray*>& values,
                  int priority, bool ignore_sparse) override {
      CHECK(ignore_sparse) << "dist kvstore pull doesn't support ignore_sparse=False";
      std::vector<int> uniq_keys;
      std::vector<std::vector<NDArray*> > grouped_vals;
      GroupKVPairsPull(keys, values, &uniq_keys, &grouped_vals, true);
    
      for (size_t i = 0; i < uniq_keys.size(); ++i) {
        int key = uniq_keys[i];
        // use the same array for merging to guarantee that pull always happens
        // after the previous push on this key
        auto& recv_buf = comm_buf_[key];
        const auto storage_type = grouped_vals[i][0]->storage_type();
        CHECK_EQ(storage_type, kDefaultStorage)
                 << "Expected stype of value to be kDefaultStorage";
        if (recv_buf.is_none()) {
          // it may happen for the first time a no-rank-0 worker pull the weight.
          recv_buf = NDArray(grouped_vals[i][0]->shape(), pinned_ctx_,
                             true, grouped_vals[i][0]->dtype());
        }
        auto pull_from_servers = [this, key, recv_buf](
            RunContext rctx, Engine::CallbackOnComplete cb) {
          // convert to ps keys
          size_t size = recv_buf.shape().Size();
          const int dtype = recv_buf.dtype();
          const int num_bytes = mshadow::mshadow_sizeof(dtype);
          PSKV& pskv = EncodeDefaultKey(key, size, num_bytes) :
          char* data = static_cast<char*> (recv_buf.data().dptr_);
          // false means not to delete data when SArray is deleted
          auto vals = new ps::SArray<char>(data, size * num_bytes, false);
          // issue pull
          RequestType mode = RequestType::kDefaultPushPull;
          const int cmd = GetCommandType(mode, dtype);
          CHECK_NOTNULL(ps_worker_)->ZPull(
           pskv.keys, vals, &pskv.lens, cmd, [vals, cb](){ delete vals; cb(); });
        };
    
        CHECK_NOTNULL(Engine::Get())->PushAsync(
            pull_from_servers,
            pinned_ctx_,
            {},
            {recv_buf.var()},
            FnProperty::kNormal,
            priority,
            "KVStoreDistDefaultStoragePull");
    
        comm_->Broadcast(key, recv_buf, grouped_vals[i], priority);
      }
    }
    

    server端执行逻辑

    server的创建以及启动

    首先在KVStoreDistServer的构造函数中为ps_server_绑定处理命令请求的CommandHandle以及处理数据请求的DataHandleEx。注意到在绑定CommandHandle时,ps_server_被向上转型成ps::SimpleApp*类型。这是因为ps::SimpleApp中实现的set_request_handle只能接收包含两个形参的函数对象,而ps::KVServer继承了ps::SimpleApp并且重载了set_request_handle,使之可以接收包含三个形参的函数对象。这样一来,就完成了对控制请求和数据请求的分开处理。

    KVStoreDistServer() {
      using namespace std::placeholders;
      ps_server_ = new ps::KVServer<char>(0);
      static_cast<ps::SimpleApp*>(ps_server_)->set_request_handle(
          std::bind(&KVStoreDistServer::CommandHandle, this, _1, _2));
      ps_server_->set_request_handle(
          std::bind(&KVStoreDistServer::DataHandleEx, this, _1, _2, _3));
      sync_mode_ = false;
      gradient_compression_ = std::make_shared<GradientCompression>();
      log_verbose_ = dmlc::GetEnv("MXNET_KVSTORE_DIST_ROW_SPARSE_VERBOSE", false);
    }
    

    处理控制请求

    server接收到worker0发来的命令后,会根据命令的类型,执行不同的操作。例如,当worker发来StopServer的命令后,server就会被停止。相应的命令执行完毕后,server会发送一个响应给worker0。注意这里负责发送响应的不是ps::KVWorker<char>类型的对象,而是ps::SimpleApp类型的对象。

    void CommandHandle(const ps::SimpleData& recved, ps::SimpleApp* app) {
      CommandType recved_type = static_cast<CommandType>(recved.head);
      switch (recved_type) {
        case CommandType::kStopServer:
          exec_.Stop();
          break;
        case CommandType::kSyncMode:
          sync_mode_ = true;
          break;
        case CommandType::kSetGradientCompression:
          gradient_compression_->DecodeParams(recved.body);
          break;
        case CommandType::kSetProfilerParams:
          // last char is the type of profiler command
          ProcessServerProfilerCommands(static_cast<KVStoreServerProfilerCommand>
                                                    (recved.body.back() - '0'),
                                        recved.body);
          break;
        case CommandType::kSetMultiPrecision:
          // uses value 1 for message id from frontend
          if (!multi_precision_) {
            multi_precision_ = true;
            CreateMultiPrecisionCopies();
          }
          break;
        case CommandType::kController:
          // this uses value 0 for message id from frontend
          // let the main thread to execute ctrl, which is necessary for python
          exec_.Exec([this, recved]() {
              CHECK(controller_);
              controller_(recved.head, recved.body);
            });
          break;
      }
      app->Response(recved);
    }
    

    处理数据请求

    前面提到,DataHandleEx被注册为处理数据请求的函数,它会根据数据请求类型去调用不同的处理函数。默认情况下会调用DataHandleDefalut,该函数会对worker发来的push和pull请求分开处理。当worker节点push梯度到server时,如果某个key是第一次被push,那么server会为相应的key申请内存空间;否则会根据sync_mode_的值分别进行处理。在sync_mode_ == true(即同步训练模式)的情况下,所有worker上的梯度会被聚合到update_buf_[key].merged中;而在异步训练模式下,server把从某个worker接收的梯度放在update_buf_[key].temp_array中。随后,worker发来的push请求信息会被记录到update_buf_[key].request中。待上面的工作完成后,会调用ApplyUpdates函数去更新key对应的模型参数。当worker节点向server节点发送pull请求时,server会直接调用DefaultStorageResponse把server节点最新的模型参数发送给worker。

    void DataHandleDefault(const DataHandleType type, const ps::KVMeta& req_meta,
                           const ps::KVPairs<char>& req_data, ps::KVServer<char>* server) {
      int key = DecodeKey(req_data.keys[0]);
      auto& stored = store_[key];
      if (req_meta.push) { // push operation
        size_t ds[] = {(size_t) req_data.lens[0] / mshadow::mshadow_sizeof(type.dtype)};
        mxnet::TShape dshape(ds, ds + 1);
        TBlob recv_blob;
        MSHADOW_REAL_TYPE_SWITCH(type.dtype, DType, {
          recv_blob = TBlob(reinterpret_cast<DType*>(req_data.vals.data()), dshape, cpu::kDevMask);
        })
        NDArray recved = NDArray(recv_blob, 0);
        if (stored.is_none()) { // the first push request
          // initialization
          stored = NDArray(dshape, Context(), false, type.dtype);
          CopyFromTo(recved, &stored, 0);
          server->Response(req_meta);
          stored.WaitToRead();
        } else {
          auto& updates = update_buf_[key];
          if (sync_mode_ && updates.merged.is_none() {
            updates.merged = NDArray(dshape, Context(), false, type.dtype);
          }
          if (updates.request.empty()) { // the first 
            if (sync_mode_) {
              CopyFromTo(recvd, updates.merged);
            } else { // async training
              updates.temp_array = recved;
            }
          } else {
            updates.merged += recved;
          }
          updates.request.push_back(req_meta);
          ApplyUpdates(type, key, req_data, &updates, server);
      } else { // pull operation
        DefaultStorageResponse(type, key, req_meta, req_data, server);
      }
    }
    

    函数ApplyUpdates实现了模型权重更新的核心逻辑。如果是异步训练模式,或者当前的update_buf中的push请求数量等于worker的数量(意味着server收到了所有worker上的梯度),那么就会执行参数的更新过程;否则就不进行更新,直接调用server->Response给worker发一个不带任何数据的响应消息,表示收到了相关的数据。如果server端设置了更新器updater_,那么就会在server端执行更新操作;否则,server只对梯度进行聚合。如下代码的7~16行描述了这一过程,更新或聚合的结果会被存放到store_[key]中。由于update_buf_[key].request中保存的请求既有可能是push,也有可能是pushpull(唯独不可能是pull,因为我们只在req_meta.push==true时才把req_meta加入到update_buf_[key].request中),因此我们还要额外处理pushpull这类请求。对于update_buf_[key].request中的每个请求,如果该请求req.pull==true,那么就调用DefaultStorageResponse把模型权重传输给worker。在更新过程完成后,update_buf_[key].request就会被清空,以等待下一次更新。

    inline void ApplyUpdates(const DataHandleType type, const int key,
                             const ps::KVPairs<char>& req_data, UpdateBuf *update_buf,
                             ps::KVServer<char>* server) {
      if (!sync_mode_ || update_buf->request.size() == (size_t) ps::NumWorkers()) {
        // let the main thread to execute updater_, which is necessary for python
        auto& stored = store_[key];
        auto& update =  sync_mode_ ? update_buf->merged : update_buf->temp_array;
        if (updater_) { // update_on_kvstore == True
          exec_.Exec([this, key, &update, &stored](){
            CHECK(updater_);
            updater_(key, update, &stored);
          });
        } else { // update_on_kvstore == False, only support for sync mode
          CHECK(sync_mode_) << "Updater needs to be set for async mode";
          // if no updater, just copy
          CopyFromTo(update_buf->merged, &stored);
        }
        /**
         * Request can be for either push or pushpull
         * If pull flag is set, respond immediately with the updated values
         * Otherwise, only send the notification
         */
        bool has_pull = false;
        for (const auto& req : update_buf->request) {
          has_pull = has_pull || req.pull;
        }
        if (has_pull) {
          // if there is a pull request, perform WaitToRead() once before DefaultStorageResponse
          stored.WaitToRead();
          for (const auto& req : update_buf->request) {
            if (req.pull) {
              DefaultStorageResponse(type, key, req, req_data, server);
            }
          }
          update_buf->request.clear();
        } else {
          // otherwise, send response directly
          for (const auto& req : update_buf->request) {
            server->Response(req);
          }
          update_buf->request.clear();
          stored.WaitToRead();
        }
      } else { // donot perform update operation
        update_buf->merged.WaitToRead();
      }
    }
    

    DefaultStorageResponse会根据传入的req_metareq_data这两个参数针对worker的push请求构建出对应的带数据的响应消息。响应是一个ps::KVPairs<char>类型的对象,其中的数据部分拷贝自store_[key]。响应对象构建完成后,同样会调用server->Response将消息发回对应的worker。

    void DefaultStorageResponse(const DataHandleType type,
                                const int key,
                                const ps::KVMeta& req_meta,
                                const ps::KVPairs<char> &req_data,
                                ps::KVServer<char>* server) {
      ps::KVPairs<char> response;
      const NDArray& stored = store_[key];
      CHECK(!stored.is_none()) << "init " << key << " first";
    
      auto len = stored.shape().Size() * mshadow::mshadow_sizeof(stored.dtype());
      response.keys = req_data.keys;
      response.lens = {len};
      // TODO(mli) try to remove this CopyFrom
      response.vals.CopyFrom(static_cast<const char*>(stored.data().dptr_), len);
      server->Response(req_meta, response);
    }
    
  • 相关阅读:
    [CF 351B]Jeff and Furik[归并排序求逆序数]
    [置顶] 道德经之常与善人
    银联手机支付(.Net Csharp),3DES加密解密,RSA加密解密,RSA私钥加密公钥解密,.Net RSA 3DES C#
    SPOJ 375 (树链剖分+线段树)
    I.MX6 eMMC分区挂载
    I.MX6 android 4.2 源码下载
    I.MX6 android 源码下载
    Android 动态注册 亮屏、息屏广播
    Android 如何进入充电模式
    I.MX6 新版u-boot分析
  • 原文地址:https://www.cnblogs.com/littleorange/p/13708041.html
Copyright © 2011-2022 走看看