The task is really simple: given N exits on a highway which forms a simple cycle, you are supposed to tell the shortest distance between any pair of exits.
Input Specification:
Each input file contains one test case. For each case, the first line contains an integer N (in [3]), followed by N integer distances D1 D2 ⋯ DN, where Di is the distance between the i-th and the (-st exits, and DN is between the N-th and the 1st exits. All the numbers in a line are separated by a space. The second line gives a positive integer M (≤), with M lines follow, each contains a pair of exit numbers, provided that the exits are numbered from 1 to N. It is guaranteed that the total round trip distance is no more than 1.
Output Specification:
For each test case, print your results in M lines, each contains the shortest distance between the corresponding given pair of exits.
Sample Input:
5 1 2 4 14 9
3
1 3
2 5
4 1
Sample Output:
3 10 7
通常算法:
#include <iostream> using namespace std; int main() { /** 该方法运行超时 */ int N,M,startNum,endNum,sum1,sum2,tmp; cin>>N; int graphic[N];//数组模拟简单图 for(int i=0;i<N;i++){ cin>>graphic[i]; } cin>>M; while(M--){ sum1=0;sum2=0; cin>>startNum>>endNum; startNum--;endNum--; if(startNum>endNum){ tmp=startNum; startNum=endNum; endNum=tmp; } for(int i=0;i<N;i++){ if(i>=startNum&&i<endNum) sum1+=graphic[i]; else sum2+=graphic[i]; } cout<<(sum1>sum2?sum2:sum1)<<endl; } /** 读题: input N个数 Dn为第i和i+1的出口距离,最后一个数是和第一个数的距离 M行 每行是出口 */ system("pause"); return 0; }
优化后:
#include <iostream> using namespace std; int main() { /** 查阅参考https://www.jianshu.com/p/cb54521fda65 可以使用贪心算法 在输入的同时计算每个点到第一个点的距离, 并将它存放在数组dis中。两点的距离要么环 的劣弧,要么是环的优弧,这里先固定一下即 求由a到b的距离(a<b),另一端距离用总round trip distance(圆环总长度)减去这里求的距离,比较两者取最小值,特别地,总距离程序中用虚拟的第n+1点表示,因为它到第一个点的距离恰好等于圆环长度。 */ int N,M,sum,A,B,tmp,shortDistance1,shortDistance2; cin>>N;int distance[N]={0}; for(int i=0;i<N;i++){ cin>>distance[i]; if(i!=0) distance[i]+=distance[i-1];//每次计算总长 sum=distance[i]; } cin>>M; while(M--){ /**这边比我之前少了一个复杂度*/ cin>>A>>B; A--;B--; if(A>B){ tmp=A; A=B; B=tmp; } shortDistance1=(B-1==-1?0:distance[B-1])-(A-1==-1?0:distance[A-1]); shortDistance2=sum-shortDistance1; cout<<(shortDistance1>shortDistance2?shortDistance2:shortDistance1)<<endl; } system("pause"); return 0; }