zoukankan      html  css  js  c++  java
  • HBase(一)——HBase介绍

    HBase介绍

    1、关系型数据库与非关系型数据库

    (1)关系型数据库

    关系型数据库

    ​ 关系型数据库最典型的数据机构是表,由二维表及其之间的联系所组成的一个数据组织

    ​ 优点:

    ​ 1、易于维护:都是使用表结构,格式一致

    ​ 2、使用方便:SQL语言通用,可用于复杂查询

    ​ 3、复杂操作:支持SQL,可用于一个表以及多个表之间非常复杂的查询

    ​ 缺点:

    ​ 1、读写性能比较差,尤其是海量数据的高效率读写

    ​ 2、固定的表结构,灵活度稍欠

    ​ 3、高并发读写需求,传统关系型数据库,硬盘IO是一个很大的瓶颈

    (2)非关系型数据库

    非关系型数据库

    ​ 非关系型数据库严格上不是一种数据库,应该是一种数据结构化存储方法的集合,可以是文档或键值对

    ​ 优点:

    ​ 1、格式灵活:存储数据的格式可以是key,value形式、文档形式、图片形式等等,文档形式、图片 形式等等,使用灵活,应用场景广泛,而关系型数据库则只支持基础类型。

    ​ 2、速度快:nosql可以使用硬盘或者随机存储器作为载体,而关系型数据库只能使用硬盘

    ​ 3、高扩展性

    ​ 4、成本低:nosql数据库部署简单,基本都是开源软件

    ​ 缺点:

    ​ 1、不提供sql支持,学习和使用成本较高;

    ​ 2、无事务处理

    ​ 3、数据结构相对复杂,复杂查询方面稍欠

    2、HBase简介

    	Use Apache HBase™ when you need random, realtime read/write access to your Big Data. This project's goal is the hosting of very large tables -- billions of rows X millions of columns -- atop clusters of commodity hardware. Apache HBase is an open-source, distributed, versioned, non-relational database modeled after Google's Bigtable: A Distributed Storage System for Structured Data by Chang et al. Just as Bigtable leverages the distributed data storage provided by the Google File System, Apache HBase provides Bigtable-like capabilities on top of Hadoop and HDFS.
    

    ​ HBase的全称是Hadoop Database,是一个高可靠性,高性能、面向列、可伸缩、实时读写的分布式数据库。

    ​ 利用Hadoop HDFS作为其文件存储系统,利用Hadoop MapReduce来处理HBase中的海量数据,利用Zookeeper作为其分布式协同服务。

    ​ 主要用来存储非结构化和半结构化数据的松散数据(列存NoSQL数据库)。

    ​ 注意:NoSQL的全称是Not Only SQL,泛指非关系型数据库。

    3、HBase数据模型

    hbase数据模型

    (1)rowkey

    ​ (1)决定一行数据,每行记录的唯一标识

    ​ (2)按照字典序排序

    ​ (3)RowKey只能存储64K的字节数据

    (2)Column Family & Qualifier

    ​ (1)HBase表中的每个列都归属于某个列族,列族必须作为表模式(schema)定义的一部分预先给出。如 create ‘test’, ‘course’;

    ​ (2)列名以列族作为前缀,每个“列族”都可以有多个列成员(column);如course:math, course:english, 新的列族成员(列)可以随后按需、动态加入;

    ​ (3)权限控制、存储以及调优都是在列族层面进行的;

    ​ (4)HBase把同一列族里面的数据存储在同一目录下,由几个文件保存。

    (3)TimeStamp时间戳

    ​ (1)在HBase每个cell存储单元对同一份数据有多个版本,根据唯一的时间戳来区分每个版本之间的差异,不同版本的数据按照时间倒序排序,最新的数据版本排在最前面。

    ​ (2)时间戳的类型是 64位整型。

    ​ (3)时间戳可以由HBase(在数据写入时自动)赋值,此时间戳是精确到毫秒的当前系统时间。

    ​ (4)时间戳也可以由客户显式赋值,如果应用程序要避免数据版本冲突,就必须自己生成具有唯一性的时间戳。

    (4)Cell

    ​ (1)由行和列的坐标交叉决定;

    ​ (2)单元格是有版本的;

    ​ (3)单元格的内容是未解析的字节数组;

    ​ 1、由{row key, column( = +), version} 唯一确定的单元。
    ​ 2、cell中的数据是没有类型的,全部是字节数组形式存贮。

    4、HBase架构

    hbase架构图

    角色介绍:

    (1)Client

    ​ 1、包含访问HBase的接口并维护cache来加快对HBase的访问。

    (2)Zookeeper

    ​ 1、保证任何时候,集群中只有一个活跃master

    ​ 2、存储所有region的寻址入口

    ​ 3、实时监控region server的上线和下线信息,并实时通知master

    ​ 4、存储HBase的schema和table元数据

    (3)Master

    ​ 1、为region server分配region

    ​ 2、负责region server的负载均衡

    ​ 3、发现失效的region server并重新分配其上的region

    ​ 4、管理用户对table的增删改操作

    (4)RegionServer

    ​ 1、region server维护region,处理对这些region的IO请求

    ​ 2、region server负责切分在运行过程中变得过大的region

    regionserver组件介绍

    (1)region

    ​ 1、HBase自动把表水平划分成多个区域(region),每个region会保存一个表里某段连续的数据

    ​ 2、每个表一开始只有一个region,随着数据不断插入表,region不断增大,当增大到一个阈值的时候,region就会等分会两个新的region(裂变)

    ​ 3、当table中的行不断增多,就会有越来越多的region。这样一张完整的表被保存在多个Regionserver 上。

    (2)Memstore与storefile

    ​ 1、一个region由多个store组成,一个store对应一个CF(列族)

    ​ 2、store包括位于内存中的memstore和位于磁盘的storefile写操作先写入memstore,当memstore中的数据达到某个阈值,hregionserver会启动flashcache进程写入storefile,每次写入形成单独的一个storefile

    ​ 3、当storefile文件的数量增长到一定阈值后,系统会进行合并(minor、major ),在合并过程中会进行版本合并和删除工作(majar),形成更大的storefile

    ​ 4、当一个region所有storefile的大小和数量超过一定阈值后,会把当前的region分割为两个,并由hmaster分配到相应的regionserver服务器,实现负载均衡

    ​ 5、客户端检索数据,先在memstore找,找不到去blockcache,找不到再找storefile

    注意问题:

    ​ 1、HRegion是HBase中分布式存储和负载均衡的最小单元。最小单元就表示不同的HRegion可以分布在不同的 HRegion server上。

    ​ 2、HRegion由一个或者多个Store组成,每个store保存一个columns family。

    ​ 3、每个Strore又由一个memStore和0至多个StoreFile组成。如图:StoreFile以HFile格式保存在HDFS上。

    hbase架构图3

    5、HBase读写流程

    (1)读流程

    ​ 1、客户端从zookeeper中获取meta表所在的regionserver节点信息

    ​ 2、客户端访问meta表所在的regionserver节点,获取到region所在的regionserver信息

    ​ 3、客户端访问具体的region所在的regionserver,找到对应的region及store

    ​ 4、首先从memstore中读取数据,如果读取到了那么直接将数据返回,如果没有,则去blockcache读取数据

    ​ 5、如果blockcache中读取到数据,则直接返回数据给客户端,如果读取不到,则遍历storefile文件,查找数据

    ​ 6、如果从storefile中读取不到数据,则返回客户端为空,如果读取到数据,那么需要将数据先缓存到blockcache中(方便下一次读取),然后再将数据返回给客户端。

    ​ 7、blockcache是内存空间,如果缓存的数据比较多,满了之后会采用LRU策略,将比较老的数据进行删除。

    (2)写流程

    ​ 1、客户端从zookeeper中获取meta表所在的regionserver节点信息

    ​ 2、客户端访问meta表所在的regionserver节点,获取到region所在的regionserver信息

    ​ 3、客户端访问具体的region所在的regionserver,找到对应的region及store

    ​ 4、开始写数据,写数据的时候会先想hlog中写一份数据(方便memstore中数据丢失后能够根据hlog恢复数据,向hlog中写数据的时候也是优先写入内存,后台会有一个线程定期异步刷写数据到hdfs,如果hlog的数据也写入失败,那么数据就会发生丢失)

    ​ 5、hlog写数据完成之后,会先将数据写入到memstore,memstore默认大小是64M,当memstore满了之后会进行统一的溢写操作,将memstore中的数据持久化到hdfs中,

    ​ 6、频繁的溢写会导致产生很多的小文件,因此会进行文件的合并,文件在合并的时候有两种方式,minor和major,minor表示小范围文件的合并,major表示将所有的storefile文件都合并成一个,具体详细的过程,后续会讲解。

  • 相关阅读:
    wps 2011 破解版软件
    ios textView跟随键盘的移动
    开发版速达访问速度提升的解决方案
    开发版速达扩展功能-增值业务报表之分析交叉表第一篇
    开发版速达扩展功能-提供单据条码打印
    速达软件开发版ERP价格体系
    速达软件开发版使用技巧-帐套备份教程
    速达软件二次开发-发出商品和估价入库选择单据不显示价格和金额
    开发版速达扩展功能-业务单据明细表格数据导入
    开发版速达扩展功能-提供便捷的界面布局功能
  • 原文地址:https://www.cnblogs.com/littlepage/p/11293824.html
Copyright © 2011-2022 走看看