zoukankan      html  css  js  c++  java
  • PAT Advanced 1033 To Fill or Not to Fill (25 分)

    With highways available, driving a car from Hangzhou to any other city is easy. But since the tank capacity of a car is limited, we have to find gas stations on the way from time to time. Different gas station may give different price. You are asked to carefully design the cheapest route to go.

    Input Specification:

    Each input file contains one test case. For each case, the first line contains 4 positive numbers: Cmax​​ (≤ 100), the maximum capacity of the tank; D (≤30000), the distance between Hangzhou and the destination city; Davg​​ (≤20), the average distance per unit gas that the car can run; and N (≤ 500), the total number of gas stations. Then N lines follow, each contains a pair of non-negative numbers: Pi​​, the unit gas price, and Di​​ (≤), the distance between this station and Hangzhou, for ,. All the numbers in a line are separated by a space.

    Output Specification:

    For each test case, print the cheapest price in a line, accurate up to 2 decimal places. It is assumed that the tank is empty at the beginning. If it is impossible to reach the destination, print The maximum travel distance = X where X is the maximum possible distance the car can run, accurate up to 2 decimal places.

    Sample Input 1:

    50 1300 12 8
    6.00 1250
    7.00 600
    7.00 150
    7.10 0
    7.20 200
    7.50 400
    7.30 1000
    6.85 300
    

    Sample Output 1:

    749.17
    

    Sample Input 2:

    50 1300 12 2
    7.10 0
    7.00 600
    

    Sample Output 2:

    The maximum travel distance = 1200.00


    #include <iostream>
    #include <vector>
    #include <algorithm>
    using namespace std;
    int main(){
        int a,b,sum=0,tmp;
        vector<int> vec1,vec2;
        cin>>a;
        while(a--){
            scanf("%d",&tmp);
            vec1.push_back(tmp);
        }
        cin>>b;
        while(b--){
            scanf("%d",&tmp);
            vec2.push_back(tmp);
        }
        sort(vec1.begin(),vec1.end(),greater<int>());
        sort(vec2.begin(),vec2.end(),greater<int>());
        int i=0;int j=0;
        while(vec1[i]>0&&vec2[j]>0){
            sum+=(vec1[i]*vec2[j]);
            i++;
            j++;
            if(i>vec1.size()-1||j>vec2.size()-1) break;
            //尽量少用erase,擦除线性表是需要一个复杂度的
        }
        i=vec1.size()-1;j=vec2.size()-1;
        while(vec1[i]<0&&vec2[j]<0){
            sum+=(vec1[i]*vec2[j]);
            i--;
            j--;
            if(i<0||j<0) break;
        }
        cout<<sum;
        system("pause");
        return 0;
    }
  • 相关阅读:
    MySql 数据备份与还原
    PHP 连接数据库
    迭代法写线性回归
    ML numpy、pandas、matplotlib的使用
    005 动态加载实例
    爬虫实现案例
    004 使用scrapy框架爬虫
    003 爬虫持久化的三个不同数据库的python代码
    内置函数和匿名函数
    迭代器和生成器
  • 原文地址:https://www.cnblogs.com/littlepage/p/11355723.html
Copyright © 2011-2022 走看看