zoukankan      html  css  js  c++  java
  • 浙大数据结构课后习题 练习二 7-3 Pop Sequence (25 分)

    Given a stack which can keep M numbers at most. Push N numbers in the order of 1, 2, 3, ..., N and pop randomly. You are supposed to tell if a given sequence of numbers is a possible pop sequence of the stack. For example, if M is 5 and N is 7, we can obtain 1, 2, 3, 4, 5, 6, 7 from the stack, but not 3, 2, 1, 7, 5, 6, 4.

    Input Specification:

    Each input file contains one test case. For each case, the first line contains 3 numbers (all no more than 1000): M (the maximum capacity of the stack), N (the length of push sequence), and K (the number of pop sequences to be checked). Then K lines follow, each contains a pop sequence of N numbers. All the numbers in a line are separated by a space.

    Output Specification:

    For each pop sequence, print in one line "YES" if it is indeed a possible pop sequence of the stack, or "NO" if not.

    Sample Input:

    5 7 5
    1 2 3 4 5 6 7
    3 2 1 7 5 6 4
    7 6 5 4 3 2 1
    5 6 4 3 7 2 1
    1 7 6 5 4 3 2
    

    Sample Output:

    YES
    NO
    NO
    YES
    NO



    #include <iostream>
    #include <stack>
    using namespace std;
    int main(){
        //最大容量,一行最大数,n行
        int maxCapacity,maxNum,line;
        cin>>maxCapacity>>maxNum>>line;
        while(line--){
            stack<int> sta;
            int val[maxNum];int a=0;
            for(int i=0;i<maxNum;i++){
                cin>>val[i];
            }
            bool no=false;
            for(int i=0;i<maxNum;i++){
                sta.push(i+1);
                if(sta.size()>maxCapacity){
                    no=true;
                    break;
                }
                while(!sta.empty()&&val[a]==sta.top()){
                    sta.pop();
                    a++;
                }
            }
            if(no) cout<<"NO"<<endl;
            else if(sta.empty()) cout<<"YES"<<endl;
            else cout<<"NO"<<endl;
        }
        system("pause");
        return 0;
    }
  • 相关阅读:
    BFS(广度优先搜索)
    有源点最短路径--Dijkstra算法
    DFS(深度优先搜索)
    循环双链表基本操作
    有向图的邻接表
    无向网的邻接矩阵
    双链表的基本运算
    项目环境搭建【Docker+k8s】十 || kubernetes资源配置运行容器
    项目环境搭建【Docker+k8s】九 || kubernetes创建容器
    项目环境搭建【Docker+k8s】八 || kubernetes集群部署
  • 原文地址:https://www.cnblogs.com/littlepage/p/11375366.html
Copyright © 2011-2022 走看看