zoukankan      html  css  js  c++  java
  • CA Loves GCD

    Problem Description
    CA is a fine comrade who loves the party and people; inevitably she loves GCD (greatest common divisor) too.
    Now, there are N different numbers. Each time, CA will select several numbers (at least one), and find the GCD of these numbers. In order to have fun, CA will try every selection. After that, she wants to know the sum of all GCDs.
    If and only if there is a number exists in a selection, but does not exist in another one, we think these two selections are different from each other.
     
    Input
    First line contains T denoting the number of testcases.
    T testcases follow. Each testcase contains a integer in the first time, denoting N, the number of the numbers CA have. The second line is N numbers.
    We guarantee that all numbers in the test are in the range [1,1000].
    1T50
     
    Output
    T lines, each line prints the sum of GCDs mod 100000007.
     
    Sample Input
    2 2 2 4 3 1 2 3
     
    Sample Output
    8 10
    DP转移一下
    分两种情况:
    1. X被选中与j取gcd,即dp[i+1][gcd(x,j)] += dp[i][j];
    2. x未被选中,即dp[i+1][j] += dp[i][j];
     1 #include<iostream>
     2 #include<algorithm>
     3 #include<cstdio>
     4 #include<cstring>
     5 #include<cmath>
     6 #include<queue>
     7 #include<vector>
     8 using namespace std;
     9 const int maxn = 1005;
    10 const int mod = 100000007;
    11 typedef long long ll;
    12 //priority_queue<int, vector<int>, greater<int> > pq;
    13 int Gcd[maxn][maxn],dp[maxn][maxn];
    14 int gcd(int a,int b){
    15     return b == 0?a:gcd(b,a%b);
    16 }
    17 void up(int &x){
    18     if(x>=mod) x -= mod;
    19 }
    20 void pre(){
    21     for(int i = 0; i<=1000; i++)
    22         for(int j = 0; j<=1000; j++)
    23         Gcd[i][j] = gcd(i,j);
    24 }
    25 void solve(){
    26     int t,n;
    27     pre();
    28     scanf("%d",&t);
    29     while(t--){
    30         scanf("%d",&n);
    31         memset(dp,0,sizeof(dp));
    32         dp[0][0] = 1;
    33         int x;
    34         for(int i = 0; i<n; i++){
    35             scanf("%d",&x);
    36             for(int j = 0; j<=1000; j++)
    37             if(dp[i][j]){
    38                 up(dp[i+1][Gcd[j][x]] += dp[i][j]);
    39 
    40                 up(dp[i+1][j] += dp[i][j]%mod);
    41             }
    42         }
    43         int sum = 0;
    44         for(int i = 1; i<=1000; i++){
    45            //     if(dp[n][i]) printf("%d\n",dp[n+1][i]);
    46             up(sum += ((ll)i*dp[n][i])%mod);
    47         }
    48         printf("%d\n",sum%mod);
    49     }
    50 }
    51 int main()
    52 {
    53     solve();
    54     return 0;
    55 }
    卷珠帘
  • 相关阅读:
    终端I/O之行控制函数
    终端I/O之波特率函数
    终端I/O之stty命令
    终端I/O之终端选项标志
    终端I/O之获得和设置终端属性
    终端I/O之特殊输入字符
    终端I/O之综述
    css大小单位px em rem的转换和详解
    简单jquery实现select三级联动
    html 页面内锚点定位及跳转方法总结
  • 原文地址:https://www.cnblogs.com/littlepear/p/5348767.html
Copyright © 2011-2022 走看看