zoukankan      html  css  js  c++  java
  • [Locked] Palindrome Permutation I & II

    Palindrome Permutation I

    Given a string, determine if a permutation of the string could form a palindrome.

    For example,
    "code" -> False, "aab" -> True, "carerac" -> True.

    Hint:

    1. Consider the palindromes of odd vs even length. What difference do you notice?
    2. Count the frequency of each character.
    3. If each character occurs even number of times, then it must be a palindrome. How about character which occurs odd number of times

    分析:

      这个问题不需要判断是否是回文字符串,而是判断是否能组成回文字符串,换句话说就是字母在原字符串中的顺序无关。

    解法:

      可根据回文定义得出,即允许出现奇数次的字母种数最多为1

    证明:

      充分性,将出现奇数次的字母放在中间,若无出现奇数次的字母,则直接做下一步,然后从中间向两边依次放置出现偶数次的字母,满足;

      必要性,任意回文字符串都满足中轴对称,偶数个字母则有出现奇数次的字母种数为0,奇数个字母则有出现奇数次的字母种数为1,满足;

    代码:

    bool isPermutation(string str){
        vector<char> bin(26 ,0);
        for(char c : str)
            bin[int(c - 'a')] ^= 1;
        int count = 0;
        for(int i : bin)
            count += i;
        return count <= 1;
    }

    Palindrome Permutation II

    Given a string s, return all the palindromic permutations (without duplicates) of it. Return an empty list if no palindromic permutation could be form.

    For example:

    Given s = "aabb", return ["abba", "baab"].

    Given s = "abc", return [].

    Hint:

    1. If a palindromic permutation exists, we just need to generate the first half of the string.
    2. To generate all distinct permutations of a (half of) string, use a similar approach fromPermutations II or Next Permutation.

    分析:

      这个问题相比上个问题,是个后续输出工作,直接排列所有情况即可,证明比较直观。

    解法:

      直接排列。小技巧同Hint. 1给出的,只需要得出一边的排列。

    代码:

    void dfs(unordered_set<string> &uset, string str, vector<int> bin, int total) {
        if(total == 0) {
            uset.insert(str);
            return;
        }
        for(int i = 0; i < bin.size(); i++) {
            if(bin[i] == 0)
                continue;
            bin[i]--;
            dfs(uset, str + char(i + 'a'), bin, total - 1);
            bin[i]++;
        }
        return;
    }
    vector<string> permutation(string str){
        vector<int> bin(26 ,0);
        for(char c : str)
            bin[int(c - 'a')]++;
        int count = 0, total = 0;
        char record;
        for(int i = 0; i < bin.size(); i++) {
            total += bin[i];
            if((bin[i] & 1) == 1) {
                record = char(i + 'a');
                count++;
            }
        }
        vector<string> vs;
        if(count > 1)
            return vs;
        for(int &i : bin)
            i /= 2;
        unordered_set<string> uset;
        dfs(uset, "", bin, total / 2);
        for(string s : uset) {
            string str = s;
            if(count == 1)
                str += record;
            reverse(s.begin(), s.end());
            str += s;
            vs.push_back(str);
        }
        return vs;
    }
  • 相关阅读:
    java内存管理之内存模型
    HTTP协议
    12 数值的整数次方
    11 二进制中1的个数+二进制补充知识点
    10 矩形覆盖
    9 变态跳台阶
    8 跳台阶
    7斐波那契数列
    6旋转数组的最小数字
    5用两个栈实现队列
  • 原文地址:https://www.cnblogs.com/littletail/p/5196685.html
Copyright © 2011-2022 走看看